Udvidet returret til d. 31. januar 2025

Approximate Degree in Classical and Quantum Computing

Bag om Approximate Degree in Classical and Quantum Computing

The ability (or inability) to represent or approximate Boolean functions by polynomials is a central concept in complexity theory, underlying interactive and probabilistically checkable proof systems, circuit lower bounds, quantum complexity theory, and more. In this book, the authors survey what is known about a particularly natural notion of approximation by polynomials, capturing pointwise approximation over the real numbers. This book covers recent progress on proving approximate degree lower and upper bounds and describes some applications of the new bounds to oracle separations, quantum query and communication complexity, and circuit complexity. The authors explain how several of these advances have been unlocked by a particularly simple and elegant technique, called dual block composition, for constructing solutions to this dual linear program. They also provide concise coverage of even more recent lower bound techniques based on a new complexity measure called spectral sensitivity. Finally, they show how explicit constructions of approximating polynomials have been inspired by quantum query algorithms. This book provides a comprehensive review of the foundational and recent developments of an important topic in both classical and quantum computing. The reader has a considerable body of knowledge condensed in an accessible form to quickly understand the principles and further their own research.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781638281405
  • Indbinding:
  • Paperback
  • Sideantal:
  • 212
  • Udgivet:
  • 1. januar 2023
  • Størrelse:
  • 156x12x234 mm.
  • Vægt:
  • 330 g.
  • BLACK NOVEMBER
  Gratis fragt
Leveringstid: 8-11 hverdage
Forventet levering: 6. december 2024

Beskrivelse af Approximate Degree in Classical and Quantum Computing

The ability (or inability) to represent or approximate Boolean functions by polynomials is a central concept in complexity theory, underlying interactive and probabilistically checkable proof systems, circuit lower bounds, quantum complexity theory, and more. In this book, the authors survey what is known about a particularly natural notion of approximation by polynomials, capturing pointwise approximation over the real numbers. This book covers recent progress on proving approximate degree lower and upper bounds and describes some applications of the new bounds to oracle separations, quantum query and communication complexity, and circuit complexity. The authors explain how several of these advances have been unlocked by a particularly simple and elegant technique, called dual block composition, for constructing solutions to this dual linear program. They also provide concise coverage of even more recent lower bound techniques based on a new complexity measure called spectral sensitivity. Finally, they show how explicit constructions of approximating polynomials have been inspired by quantum query algorithms. This book provides a comprehensive review of the foundational and recent developments of an important topic in both classical and quantum computing. The reader has a considerable body of knowledge condensed in an accessible form to quickly understand the principles and further their own research.

Brugerbedømmelser af Approximate Degree in Classical and Quantum Computing



Find lignende bøger
Bogen Approximate Degree in Classical and Quantum Computing findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.