Udvidet returret til d. 31. januar 2025

Computational Intelligence Systems and Applications

- Neuro-Fuzzy and Fuzzy Neural Synergisms

Bag om Computational Intelligence Systems and Applications

Traditional Artificial Intelligence (AI) systems adopted symbolic processing as their main paradigm. Symbolic AI systems have proved effective in handling problems characterized by exact and complete knowledge representation. Unfortunately, these systems have very little power in dealing with imprecise, uncertain and incomplete data and information which significantly contribute to the description of many real­ world problems, both physical systems and processes as well as mechanisms of decision making. Moreover, there are many situations where the expert domain knowledge (the basis for many symbolic AI systems) is not sufficient for the design of intelligent systems, due to incompleteness of the existing knowledge, problems caused by different biases of human experts, difficulties in forming rules, etc. In general, problem knowledge for solving a given problem can consist of an explicit knowledge (e.g., heuristic rules provided by a domain an implicit, hidden knowledge "buried" in past-experience expert) and numerical data. A study of huge amounts of these data (collected in databases) and the synthesizing of the knowledge "encoded" in them (also referred to as knowledge discovery in data or data mining), can significantly improve the performance of the intelligent systems designed.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783662003343
  • Indbinding:
  • Paperback
  • Sideantal:
  • 364
  • Udgivet:
  • 14. december 2001
  • Udgave:
  • 12002
  • Størrelse:
  • 235x155x19 mm.
  • Vægt:
  • 575 g.
  • BLACK WEEK
  Gratis fragt
Leveringstid: 8-11 hverdage
Forventet levering: 13. december 2024
Forlænget returret til d. 31. januar 2025

Beskrivelse af Computational Intelligence Systems and Applications

Traditional Artificial Intelligence (AI) systems adopted symbolic processing as their main paradigm. Symbolic AI systems have proved effective in handling problems characterized by exact and complete knowledge representation. Unfortunately, these systems have very little power in dealing with imprecise, uncertain and incomplete data and information which significantly contribute to the description of many real­ world problems, both physical systems and processes as well as mechanisms of decision making. Moreover, there are many situations where the expert domain knowledge (the basis for many symbolic AI systems) is not sufficient for the design of intelligent systems, due to incompleteness of the existing knowledge, problems caused by different biases of human experts, difficulties in forming rules, etc. In general, problem knowledge for solving a given problem can consist of an explicit knowledge (e.g., heuristic rules provided by a domain an implicit, hidden knowledge "buried" in past-experience expert) and numerical data. A study of huge amounts of these data (collected in databases) and the synthesizing of the knowledge "encoded" in them (also referred to as knowledge discovery in data or data mining), can significantly improve the performance of the intelligent systems designed.

Brugerbedømmelser af Computational Intelligence Systems and Applications



Find lignende bøger
Bogen Computational Intelligence Systems and Applications findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.