Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Written for advanced undergraduate and first-year graduate students, this book aims to introduce students to a serious level of p-adic analysis with important implications for number theory. The main object is the study of G-series, that is, power series y=aij=0 Ajxj with coefficients in an algebraic number field K. These series satisfy a linear differential equation Ly=0 with LIK(x) [d/dx] and have non-zero radii of convergence for each imbedding of K into the complex numbers. They have the further property that the common denominators of the first s coefficients go to infinity geometrically with the index s. After presenting a review of valuation theory and elementary p-adic analysis together with an application to the congruence zeta function, this book offers a detailed study of the p-adic properties of formal power series solutions of linear differential equations. In particular, the p-adic radii of convergence and the p-adic growth of coefficients are studied. Recent work of Christol, Bombieri, Andre, and Dwork is treated and augmented. The book concludes with Chudnovsky's theorem: the analytic continuation of a G -series is again a G -series. This book will be indispensable for those wishing to study the work of Bombieri and Andre on global relations and for the study of the arithmetic properties of solutions of ordinary differential equations.
The description for this book, Contributions to Fourier Analysis. (AM-25), will be forthcoming.
The description for this book, Degrees of Unsolvability. (AM-55), Volume 55, will be forthcoming.
The description for this book, Knot Groups. Annals of Mathematics Studies. (AM-56), Volume 56, will be forthcoming.
This book contains a valuable discussion of renormalization through the addition of counterterms to the Lagrangian, giving the first complete proof of the cancellation of all divergences in an arbitrary interaction. The author also introduces a new method of renormalizing an arbitrary Feynman amplitude, a method that is simpler than previous approaches and can be used to study the renormalized perturbation series in quantum field theory.
Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring an abelian group K0 or K1 respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to abelian groups. Just as functors K0 and K1 are important to geometric topologists, K2 is now considered to have similar topological applications. The exposition includes, besides K-theory, a considerable amount of related arithmetic.
This volume contains almost all of the papers that were read at the Conference on Discontinuous Groups and Riemann Surfaces, which was held at the University of Maryland during May 21-25, 1973. The conference was the third sequence of conferences on this subject in recent years.
This work offers a contribution in the geometric form of the theory of several complex variables. Since complex Grassmann manifolds serve as classifying spaces of complex vector bundles, the cohomology structure of a complex Grassmann manifold is of importance for the construction of Chern classes of complex vector bundles. The cohomology ring of a Grassmannian is therefore of interest in topology, differential geometry, algebraic geometry, and complex analysis. Wilhelm Stoll treats certain aspects of the complex analysis point of view.This work originated with questions in value distribution theory. Here analytic sets and differential forms rather than the corresponding homology and cohomology classes are considered. On the Grassmann manifold, the cohomology ring is isomorphic to the ring of differential forms invariant under the unitary group, and each cohomology class is determined by a family of analytic sets.
The purpose of this book is to describe a certain number of results involving the study of non-linear analytic dependence of some functionals arising naturally in P.D.E. or operator theory.
Based on the "Hermann Weyl Lectures" given at the Institute for Advanced Study in January 1986. This title outlines some of what is known about irreducible unitary representations of real reductive groups, providing definitions and references, and sketches of most proofs.
Studies one of the simplest general problems in the theory, that of relating automorphic forms on arithmetic subgroups of GL(n,E) and GL(n,F) when E/F is a cyclic extension of number fields. (This is known as the base change problem for GL(n).) The problem is solved by means of the trace formula.
This book provides the first coherent account of the area of analysis that involves the Heisenberg group, quantization, the Weyl calculus, the metaplectic representation, wave packets, and related concepts. This circle of ideas comes principally from mathematical physics, partial differential equations, and Fourier analysis, and it illuminates all these subjects. The principal features of the book are as follows: a thorough treatment of the representations of the Heisenberg group, their associated integral transforms, and the metaplectic representation; an exposition of the Weyl calculus of pseudodifferential operators, with emphasis on ideas coming from harmonic analysis and physics; a discussion of wave packet transforms and their applications; and a new development of Howe's theory of the oscillator semigroup.
The purpose of this book is to develop the stable trace formula for unitary groups in three variables. The stable trace formula is then applied to obtain a classification of automorphic representations. This work represents the first case in which the stable trace formula has been worked out beyond the case of SL (2) and related groups. Many phenomena which will appear in the general case present themselves already for these unitary groups.
This book is concerned with two areas of mathematics, at first sight disjoint, and with some of the analogies and interactions between them. These areas are the theory of linear differential equations in one complex variable with polynomial coefficients, and the theory of one parameter families of exponential sums over finite fields. After reviewing some results from representation theory, the book discusses results about differential equations and their differential galois groups (G) and one-parameter families of exponential sums and their geometric monodromy groups (G). The final part of the book is devoted to comparison theorems relating G and G of suitably "e;corresponding"e; situations, which provide a systematic explanation of the remarkable "e;coincidences"e; found "e;by hand"e; in the hypergeometric case.
The description for this book, An Introduction to Linear Transformations in Hilbert Space. (AM-4), Volume 4, will be forthcoming.
The description for this book, Degree of Approximation by Polynomials in the Complex Domain. (AM-9), Volume 9, will be forthcoming.
A study of the properties of manysided figures and their ability to deform, twist, and stretch without changing their shape. It offers an in-depth introduction to the field, providing explanations of what would today be considered the basic tools of algebraic topology.
The description for this book, Meromorphic Functions and Analytic Curves. (AM-12), will be forthcoming.
The description for this book, Curvature and Betti Numbers. (AM-32), Volume 32, will be forthcoming.
The description for this book, Composition Methods in Homotopy Groups of Spheres. (AM-49), Volume 49, will be forthcoming.
Includes fifteen articles which focus on the developments in complex analysis. This work covers a spectrum of research using the methods of partial differential equations as well as differential and algebraic geometry. It covers topics that include invariants of manifolds, the complex Neumann problem, complex dynamics, Ricci flows, and more.
This book describes an invariant, l, of oriented rational homology 3-spheres which is a generalization of work of Andrew Casson in the integer homology sphere case. Let R(X) denote the space of conjugacy classes of representations of p(X) into SU(2). Let (W,W,F) be a Heegaard splitting of a rational homology sphere M. Then l(M) is declared to be an appropriately defined intersection number of R(W) and R(W) inside R(F). The definition of this intersection number is a delicate task, as the spaces involved have singularities. A formula describing how l transforms under Dehn surgery is proved. The formula involves Alexander polynomials and Dedekind sums, and can be used to give a rather elementary proof of the existence of l. It is also shown that when M is a Z-homology sphere, l(M) determines the Rochlin invariant of M.
This collection brings together papers by mathematicians exploring the research frontiers of topology. The book covers a wide range of topological specialities.
Addressing researchers and graduate students in the active meeting ground of analysis, geometry, and dynamics, this book presents a study of renormalization of quadratic polynomials and a rapid introduction to techniques in complex dynamics. Its central concern is the structure of an infinitely renormalizable quadratic polynomial f(z) = z2 + c. As discovered by Feigenbaum, such a mapping exhibits a repetition of form at infinitely many scales. Drawing on universal estimates in hyperbolic geometry, this work gives an analysis of the limiting forms that can occur and develops a rigidity criterion for the polynomial f. This criterion supports general conjectures about the behavior of rational maps and the structure of the Mandelbrot set. The course of the main argument entails many facets of modern complex dynamics. Included are foundational results in geometric function theory, quasiconformal mappings, and hyperbolic geometry. Most of the tools are discussed in the setting of general polynomials and rational maps.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.