Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Biological systems have always inspired mankind in the creation of new systems and technologies. In recent years the interface between the biological and non-biological worlds appears increasingly blurred due to significant advances both in our understanding of biological phenomena, as well as the development of sophisticated means to manipulate molecular systems for varied applications. Biomimetics as a distinct discipline shows how biology and biological processes are manifested in diverse aspects of chemistry, physics and engineering. This book aims to methodically describe artificial and synthetic assemblies mimicking biological and living systems - from biomaterials to drug discovery to microelectronics and computer sciences.
General introduction - Definition of nanodispersions (nanosuspensions, nanoemulsions, swollen micelles or microemulsions, liposomes and vesicles) and their size range. General description of their colloid stability. Main advantages of nanodispersions and their industrial applications.Preparation of nanosuspensions by top-up process - Nucleation and growth and control of particle size distribution. Factors determining the formation of narrow particle size distribution. Role of surfactants and polymers. Preparation of nano-polymer colloids (lattices) by emulsion and dispersion polymerization. Factors affects the stability of nanosuspensions.Preparation of nanosuspensions by bottom down process - Dispersion of preformed particles in liquids and the need of a wetting agent. Break-up of aggregates and agglomerates by application of high speed stirrers. Reduction of particle size by application of intense energy (microfluidization or bead milling). Maintenance of the colloid stability of the resulting particles. Reduction of Ostwald ripening.Industrial applications of nanosuspensions - Application in pharmacy to enhance bioavailability, Application in sunscreens for UV protection. Application in paints and coatings.Preparation of nanoemulsions by the use of high pressure homogenisers - Principles of emulsion formation and the role of the emulsifier. Selection of emulsifiers. Methods of emulsification and prevention of coalescence during emulsification. Origin of colloid stability of nanoemulsions. Prevention of Ostwald ripeningLow energy methods for nanoemulsion preparation - The phase inversion composition method and the role of mixing the surfactant with oil and water. The phase inversion temperature method for preparation of nanoemulsions. Preparation of nanoemulsions by dilution of microemulsions.Practical examples of nanoemulsions and their industrial application - Nanoemulsions based on non-ionic surfactants and the role of the hydrophilic-lipophilic balance. Effect of oil solubility on the stabilityof nanoemulsions. Nanoemulsions based on polymeric surfactants. Applications in pharmacy and cosmetics.Swollen micelles or microemulsionsDefinition of microemulsions and their size range. Thermodynamic definition of microemulstions. Theories of microemulsion formation and stability. Characterisation of microemulsions using scattering, conductivity and NMR rechniques.Formulation of microemulsions and their industrial applications - Distinction between microemulsions and macroemulsions. Formulation of oil/water and water/oil microemulsions. Selection of emulsifiers for microemulsions. Application of microemulsions in tertiary oil recovery.Liposomes and vesicles - Formation of multilamellar lipid layers (liposomes) by dispersion of lipids in water. Formation of unilamellar vesicles by sonication of the liposomes. Factors responsible for stabilisation of liposomes and vesicles. Use of block copolymers to enhance the stability of vesicles. Applications of liposomes and vesicles in pharmacy and cosmetics.
Along with the first volume on "e;Industrial Chemistry"e; this book discusses, illustrates and explains many of the major chemical processes performed by industry, looks at how transformations affect the quality of our lives, examines the various types of waste produced as necessary products are developed and marketed, and shows techniques and practices in which many industries have made strides to improve or "e;green"e; specific chemical processes.
The vital need for alternative resources and reaction routes, environmentally friendly and economically feasible industrial chemical processes has become a ubiquitous reality. This very timely introductory text covers new materials, processes and industry sectors: nanotechnology, microreactors, membrane separations, hybrid processes, clean technologies, energy savings and safe production of energy, renewables and biotechnology. Some completely new processes for the solid-liquid systems are also discussed in detail, thus creating new opportunities of sustainable development not only in industrial practice.
This book is an introduction to nonlinear programming. It deals with the theoretical foundations and solution methods, beginning with the classical procedures and reaching up to "e;modern"e; methods like trust region methods or procedures for nonlinear and global optimization. A comprehensive bibliography including diverse web sites with information about nonlinear programming, in particular software, is presented. Without sacrificing the necessary mathematical rigor, excessive formalisms are avoided. Several examples, exercises with detailed solutions, and applications are provided, making the text adequate for individual studies. The book is written for students from the fields of applied mathematics, engineering, economy, and computation.
Nanoparticles presents the remarkable variety of nanoparticle families, compositions, structures, and functions. The book discusses nanoparticles made of semiconductors, metals, metal-oxides, organics, biological and hybrid constituents.Through a wealth of examples and case studies, supplemented by numerousfigures, readers that are not necessarily active or experts in this area acquire abroad overview of this exciting field at the interface between scientifi c research and practical technologies.The contents summarize the contributions to this field of diverse scientific and technological disciplines- chemistry, physics, biology, electronics and others providing acomprehensive knowledge- the types of nanoparticles, their compositions and how the relationships between the atomic constituents affect their properties, as well as potential applications of nanoparticles.- Covers diverse uses of nanoparticles in scientifi c research and industrial applications, underscoring their extraordinary diversity and potential utilization.- Experimental and conceptual approaches applied to the study of nanoparticles are discussed extensively. Additional references provide the reader with a basis for further study.- Also available by Professor Jelinek: Biomimetics - A Molecular Perspective (2013), ISBN: 978-3-11-028117-0
Industrial Inorganic Chemistry adds to the previously published graduate level textbooks on Industrial Chemistry by Mark A. Benvenuto. It focuses specifically on inorganic processes, from the largest industrial process for the production of major inorganic chemicals and metals, down to and including smaller niche processes that have become extremely important in maintaining the current quality of life. The book provides a survey on the production of essential elements and compounds, such as sulfuric acid, calcium carbonate, fertilizers as well as numerous metals and alloys. In addition to the fundamental scientific principles each chapter includes discussions on the environmental impacts: mining of raw materials, creation of by-products, pollution, and waste generation, all of which have become key factors for the potential implementation of greener methods. The author also highlights ways in which industry has begun to make industrial inorganic processes more environmentally benign. Examines major inorganic chemistry processes, their effect on every-day life and current efforts to improve processes or adapt green"e; chemical production. Provides didactic links between theoretical lecture contents and current, largescale chemical processes. Valuable for students of Inorganic Chemistry, Industrial Chemistry, Chemical Engineering and Materials Sciences.
The extensive use of little known electronic principles provides something like the Science of Electronics supplementing the Art of Electronics without involvement of too much theory. Whereas art can only be acquired by doing, the knowledge provided by science can be acquired from books. The ready availability of integrated circuits for practically any application reduces the art of electronics to the art of interfacing these integrated components. The practical knowledge required for that art can only be acquired by doing and not by reading. However, it takes a lot of knowledge to select the best integrated component for achieving a specific goal. Such knowledge is provided in this book. By using a holistic approach in the understanding of the various circuits and by taking ample advantage of the duality between the electrical quantities voltage and current, the understanding of the properties of electronic circuits is made easier. Besides, this approach reduces the amount of mathematics needed for a deeper understanding. Thus, this book is appropriate for scholars at the advanced undergraduate level. In particular, the important aspects of positive and negative feedback in circuits are presented in a compact way by introducing the reverse closed-loop-gain. It is quite clear that a single book cannot cover all aspects of both analog and digital electronics, the latter comprising all circuits needed for data manipulation in digital computers- which is a field in itself.
This book offers an introduction to differential geometry for the non-specialist. It includes most of the required material from multivariable calculus, linear algebra, and basic analysis. An intuitive approach and a minimum of prerequisites make it a valuable companion for students of mathematics and physics. The main focus is on manifolds in Euclidean space and the metric properties they inherit from it. Among the topics discussed are curvature and how it affects the shape of space, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.
Cryptography has become essential as bank transactions, credit card infor-mation, contracts, and sensitive medical information are sent through inse-cure channels. This book is concerned with the mathematical, especially algebraic, aspects of cryptography. It grew out of many courses presented by the authors over the past twenty years at various universities and covers a wide range of topics in mathematical cryptography. It is primarily geared towards graduate students and advanced undergraduates in mathematics and computer science, but may also be of interest to researchers in the area. Besides the classical methods of symmetric and private key encryption, the book treats the mathematics of cryptographic protocols and several unique topics such as Group-Based Cryptography Grobner Basis Methods in Cryptography Lattice-Based Cryptography
This two-volume graduate textbook gives a comprehensive, state-of-the-art account of describing large subgroups of the unit group of the integral group ring of a finite group and, more generally, of the unit group of an order in a finite dimensional semisimple rational algebra. Since the book is addressed to graduate students as well as young researchers, all required background on these diverse areas, both old and new, is included. Supporting problems illustrate the results and complete some of the proofs. Volume 1 contains all the details on describing generic constructions of units and the subgroup they generate. Volume 2 mainly is about structure theorems and geometric methods. Without being encyclopaedic, all main results and techniques used to achieve these results are included. Basic courses in group theory, ring theory and field theory are assumed as background.
This book introduces the classical and modern image reconstruction technologies. It covers topics in two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. Both analytical and iterative methods are presented. The applications in X-ray CT, SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging) are discussed. Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly under-sampled data are included. The last chapter of the book is devoted to the techniques of using a fast analytical algorithm to reconstruct an image that is equivalent to an iterative reconstruction. These techniques are the author's most recent research results. This book is intended for students, engineers, and researchers who are interested in medical image reconstruction. Written in a non-mathematical way, this book provides an easy access to modern mathematical methods in medical imaging. Table of Content:Chapter 1 Basic Principles of Tomography1.1 Tomography1.2 Projection1.3 Image Reconstruction1.4 Backprojection1.5 Mathematical ExpressionsProblemsReferencesChapter 2 Parallel-Beam Image Reconstruction2.1 Fourier Transform2.2 Central Slice Theorem2.3 Reconstruction Algorithms2.4 A Computer Simulation2.5 ROI Reconstruction with Truncated Projections2.6 Mathematical Expressions (The Fourier Transform and Convolution , The Hilbert Transform and the Finite Hilbert Transform , Proof of the Central Slice Theorem, Derivation of the Filtered Backprojection Algorithm , Expression of the Convolution Backprojection Algorithm, Expression of the Radon Inversion Formula ,Derivation of the Backprojection-then-Filtering AlgorithmProblemsReferencesChapter 3 Fan-Beam Image Reconstruction3.1 Fan-Beam Geometry and Point Spread Function3.2 Parallel-Beam to Fan-Beam Algorithm Conversion3.3 Short Scan3.4 Mathematical Expressions (Derivation of a Filtered Backprojection Fan-Beam Algorithm, A Fan-Beam Algorithm Using the Derivative and the Hilbert Transform)ProblemsReferencesChapter 4 Transmission and Emission Tomography4.1 X-Ray Computed Tomography4.2 Positron Emission Tomography and Single Photon Emission Computed Tomography4.3 Attenuation Correction for Emission Tomography4.4 Mathematical ExpressionsProblemsReferencesChapter 5 3D Image Reconstruction5.1 Parallel Line-Integral Data5.2 Parallel Plane-Integral Data5.3 Cone-Beam Data (Feldkamp's Algorithm, Grangeat's Algorithm, Katsevich's Algorithm)5.4 Mathematical Expressions (Backprojection-then-Filtering for Parallel Line-Integral Data, Filtered Backprojection Algorithm for Parallel Line-Integral Data, 3D Radon Inversion Formula, 3D Backprojection-then-Filtering Algorithm for Radon Data, Feldkamp's Algorithm, Tuy's Relationship, Grangeat's Relationship, Katsevich's Algorithm)ProblemsReferencesChapter 6 Iterative Reconstruction6.1 Solving a System of Linear Equations6.2 Algebraic Reconstruction Technique6.3 Gradient Descent Algorithms6.4 Maximum-Likelihood Expectation-Maximization Algorithms6.5 Ordered-Subset Expectation-Maximization Algorithm6.6 Noise Handling (Analytical Methods, Iterative Methods, Iterative Methods)6.7 Noise Modeling as a Likelihood Function6.8 Including Prior Knowledge6.9 Mathematical Expressions (ART, Conjugate Gradient Algorithm, ML-EM, OS-EM, Green's One-Step Late Algorithm, Matched and Unmatched Projector/Backprojector Pairs )6.10 Reconstruction Using Highly Undersampled Data with l0 MinimizationProblemsReferencesChapter 7 MRI Reconstruction7.1 The 'M'7.2 The 'R'7.3 The 'I'; (To Obtain z-Information, x-Information, y-Information)7.4 Mathematical ExpressionsProblemsReferencesIndexing
Polymer Surface Characterization provides a comprehensive approach to the surface analysis of polymers of technological interest by means of modern analytical techniques. Basic principles, operative conditions, applications, performance, and limiting features are supplied, together with current advances in instrumental apparatus. Each chapter is devoted to one technique and is self-consistent; the end-of-chapter references would allow the reader a quick access to more detailed information.After an introductory chapter, techniques that can interrogate the very shallow depth of a polymer surface, spanning from the top few angstroms in secondary ions mass spectrometry to 2-10 nm in X-ray photoelectron spectroscopy are discussed, followed by Fourier transform infrared spectroscopy and chapters on characterization by scanning probe microscopy, electron microscopies, wettability and spectroscopic ellipsometry.
Signals and systems enjoy wide application in industry and daily life, and understanding basic concepts of the subject area is of importance to undergraduates majoring in engineering. With rigorous mathematical deduction, this introductory text book is helpful for students who study communications engineering, electrical and electronic engineering, and control engineering. Additionally, supplementary materials are provided for self-learners.
This textbook is an anthology of significant theoretical discussions of biography as a genre and as a literary-historical practice. Covering the 18th to the 21st centuries, the reader includes programmatic texts by authors such as Herder, Carlyle, Dilthey, Proust, Freud, Kracauer, Woolf and Bourdieu. Each text is accompanied by a commentary placing its contribution in critical context. Ideal for use in undergraduate seminars, this reader may also be of interest for academic researchers in the areas of literary studies and history aiming to get an overview of historical questions in biographical theory. This revised and updated English language edition also includes new translations of texts by J. G. Herder and Stefan Zweig, as well as an introductory discussion on the possibility of a 'theory of biography'. Note: Due to copyright reasons, the chapter "e;Sade, Fourier, Loyola [Extract] (1971)"e; (pp. 175-177) by Roland Barthes could not be included in the ebook.
"e;Functional Materials textbook is not simply a review of the vast body of literature of the recent years, as it holds the focus upon various aspects of application. Moreover, it selects only a few topics in favor of a solid and thorough treatment of the relevant aspects. This book comes in a good time, when a large body of academic literature has been accumulated and is waiting for a critical inspection in the light of the real demands of application."e; Professor Gerhard Wegner, Max-Planck Institute for Polymer Research, Mainz, GermanyThe chapters cover three important fields in the development of functional materials: energy, environment, and biomedical applications. These topics are explained and discussed from both an experimental and a theoretical perspective. Functional organic and inorganic materials are at the center of most technological breakthroughs. Therefore, the understanding of material properties is fundamental to the development of novel functionalities and applications.
This two-volume graduate textbook gives a comprehensive, state-of-the-art account of describing large subgroups of the unit group of the integral group ring of a finite group and, more generally, of the unit group of an order in a finite dimensional semisimple rational algebra. Since the book is addressed to graduate students as well as young researchers, all required background on these diverse areas, both old and new, is included. Supporting problems illustrate the results and complete some of the proofs. Volume 1 contains all the details on describing generic constructions of units and the subgroup they generate. Volume 2 mainly is about structure theorems and geometric methods. Without being encyclopaedic, all main results and techniques used to achieve these results are included. Basic courses in group theory, ring theory and field theory are assumed as background.
This textbook on functional analysis offers a short and concise introduction to the subject. The book is designed in such a way as to provide a smooth transition between elementary and advanced topics and its modular structure allows for an easy assimilation of the content. Starting from a dedicated chapter on the axiom of choice, subsequent chapters cover Hilbert spaces, linear operators, functionals and duality, Fourier series, Fourier transform, the fixed point theorem, Baire categories, the uniform bounded principle, the open mapping theorem, the closed graph theorem, the Hahn-Banach theorem, adjoint operators, weak topologies and reflexivity, operators in Hilbert spaces, spectral theory of operators in Hilbert spaces, and compactness. Each chapter ends with workable problems.The book is suitable for graduate students, but also for advanced undergraduates, in mathematics and physics. Contents:List of FiguresBasic NotationChoice PrinciplesHilbert SpacesCompleteness, Completion and DimensionLinear OperatorsFunctionals and Dual SpacesFourier SeriesFourier TransformFixed Point TheoremBaire Category TheoremUniform Boundedness PrincipleOpen Mapping TheoremClosed Graph TheoremHahn-Banach TheoremThe Adjoint OperatorWeak Topologies and ReflexivityOperators in Hilbert SpacesSpectral Theory of Operators on Hilbert SpacesCompactnessBibliographyIndex
This textbook deals with the basics and methods of photogrammetry and laser scanning which are used to determine the form and location of objects, with measurements provided by sensors placed in air planes as well as on terrestrial platforms. Many examples and exercises with solutions are included. Photogrammetry, Laserscanning.
Intermetallic compounds play an extraordinary role in daily life for construction materials and well-defined functions that are based on their specific chemical and physical properties, e.g. magnetism and superconductivity. High-tech materials are meanwhile indispensable in our technology-driven information society. The Periodic Table comprises more than 80 metallic elements which offer an incredible potential for formation of binary, ternary and even multinary intermetallic compounds with peculiar crystal structures and properties. The present textbook introduces into the basics of intermetallic chemistry with an emphasis on crystal chemistry and selected chemical and physical properties.
If the carriers of information are governed by quantum mechanics, new principles for information processing apply. This graduate textbook introduces the underlying mathematical theory for quantum communication, computation, and cryptography. A focus lies on the concept of quantum channels, understanding fi gures of merit, e.g. fidelities and entropies in the quantum world, and understanding the interrelationship of various quantum information processing protocols.
This text coherently links biochemical fundamentals and mechanisms with economic and societal problems of environmental pollution. It addresses interdisciplinary topics such as regulatory problems, sampling and pollutant quantifi cation, model organisms and provides a philosophical perspective on the toxin load on a variety of organisms, including humans in the environment in the Anthropocene. Case studies and exercises illustrate current issues and discuss future aspects.
This book is an introductory work on the broad topics included in Materials Science. It encompasses a number of different materials classes and properties with a focus on the structure-property relationships between them. Each class of materials will include and discuss recycling techniques and other green methods of production. Materials Chemistry: For Scientists and Engineers is ideal for all newcomers to the fi eld as well as for those seeking a knowledge of solid state chemistry.
High temperature superconducting theory drew controversy after the discovery of superconductors at close to room temperatures. However, a consistent microscopic theory of HT superconductivity based on bipolaron mechanism leads to a better understanding of microscopic and macroscopic description. By presenting aspects of superconductivity now joined in a strict theory rather than separate models this work is especially useful for graduate students.
This book bridges the gap between a clinician's and material scientists' knowledge by elucidating upon the different biomaterials used in anatomical systems and how those materials react to the human body. It explores both established and future prospective of biomaterial types/designs, and considerations in material selection and synthesis, to guide students from non-clinical background in understanding the relations of material science and the human body.
This book introduces the techniques of Instrumental Analysis with respect to fundamental basics, technical realization, key applications, major strengths and limitations. The approach used is to highlight differences and consolidate similarities of the techniques, focusing especially on the viewpoint of the laboratory rather than on the scientific ideal or the limits of what is possible.
How can empathy and persuasiveness help us become better professionals and address society's big issues? You can find the answers in this guide to solving problems based on stories from scientists and company founders. You can pre-order the book here: https://dgo.formstack.com/forms/preorderform_empathic_entrepreneurial_engineering
This book provides the fundamental underlying mathematical theory, numerical algorithms and effi cient computational tools for the solution of multi-level mixedinteger optimization problems. It can enable a vast array of decision makers and engineers (e.g. process engineers, bioengineers, chemical and civil engineers, and economists) to model, formulate and solve hierarchical decision making problems. The book gives detailed insights on multi-level optimization by comprehensive explanations, step-by-step numerical examples and case studies, plots, and diagrams.
Pinch Technology explains the principles of process integration, the use of pinch technology as well as energy recycling in oil, gas, petrochemical and industrial processes. It gives an complete overview of all relevant and similar references in the fi eld of energy recovery in oil, gas and petrochemicals.
This book serves as an introduction to graduate students and early career researchers on chemistry and botany of the cannabis plant. Cannabis botany, propagation, biotechnology, chemistry, cannabinoids and their biosynthesis, chemovars of cannabis and their identification as well as the other chemical classes of compounds known to exist in the plant. Analytical method are discussed to establish identity and Potency changes over the years in the United States. This book will build a base of knowledge on the complexity of cannabis chemistry. Features Introduction to the fundamental chemistry and botany of Cannabis. State of the art research on Cannabis sativa. The history, botany, major chemical classes of cannabis as well as methods of analysis and potency trends over several decades in the United States. Written by prominent scientists in the field of cannabis. The Cannabis Chemistry Subdivision of the American Chemical Society recently founded in 2022 the ElSohly Award sponsored by Heidolph North America in honour of Prof. Mahmoud A. ElSohly. This award provides researchers, students, and industry professionals with resources to present their work at the Spring National Meeting of the American Chemical Society at the ElSohly Award Symposium. More information: https://cann-acs.org/wp-content/uploads/2020/12/CANN-Postcard-Award.pdf
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.