Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The first systematic account of the basic theory of normed algebras, without assuming associativity, includes many new and unpublished results and is sure to become a central resource for researchers and graduate students in the field. This first volume of two focuses on C*-algebras and related structure.
This is a complete and systematic modern treatise on large deviation theory for random walks with light-tailed jump distributions, presented by one of its key creators. Such distributions have numerous applications in statistics, ruin theory, and queuing theory. This is a companion to the author's earlier monograph on heavy-tailed distributions.
Written by acknowledged international experts in the field, this book presents fifteen expository chapters in the rapidly expanding area of algorithmic graph theory. It serves graduate students and researchers in graph theory, combinatorics and computer science, as well as mathematicians and computer scientists in related fields.
Suitable for graduate students and researchers in diverse areas of mathematics, this monograph offers a new perspective on the classical theory of connected Hopf algebras, and extends it to a new setting where a real hyperplane arrangement is a central feature.
Understanding the interaction of waves with obstacles is fundamental in many areas of science and engineering. This book synthesises mathematical methods for solving such scattering problems, with an emphasis on time-dependent problems. It will be a valuable resource for applied mathematicians, physicists and engineers.
This book, targeted at graduate students and researchers interested in functional analysis, gives a comprehensive coverage of classic and recent works on the numerical range theory. With detailed references to the literature and numerous exercises, it serves as an accessible entry point into this lively and exciting research area.
This book gathers all the main results on the spectral representation of the most important one-dimensional Markov processes, with examples and applications. Covering sixty years of research, it is an essential resource for graduate students and researchers interested in the connection between orthogonal polynomials and stochastic processes.
Strongly regular graphs are found in statistical design, finite group theory, coding theory and quantum information theory. This detailed survey of the theory and examples gathers the major results for the first time. It is an invaluable reference for researchers in graph theory, algebraic combinatorics, information theory and group theory.
The theory of structured dependence has many real-life applications in areas such as finance, insurance, seismology, neuroscience, and genetics. The first book to be devoted to this research area, this is a useful tool for researchers and practitioners in the field, as well as graduate students.
This book presents an up-to-date, unified treatment of research in bounded arithmetic and complexity of propositional logic, with emphasis on independence proofs and lower bound proofs. The author discusses the deep connections between logic and complexity theory and lists a number of intriguing open problems. An introduction to the basics of logic and complexity theory is followed by discussion of important results in propositional proof systems and systems of bounded arithmetic. More advanced topics are then treated, including polynomial simulations and conservativity results, various witnessing theorems, the translation of bounded formulas (and their proofs) into propositional ones, the method of random partial restrictions and its applications, direct independence proofs, complete systems of partial relations, lower bounds to the size of constant-depth propositional proofs, the method of Boolean valuations, the issue of hard tautologies and optimal proof systems, combinatorics and complexity theory within bounded arithmetic, and relations to complexity issues of predicate calculus. Students and researchers in mathematical logic and complexity theory will find this comprehensive treatment an excellent guide to this expanding interdisciplinary area.
This revised and expanded new edition will continue to meet the needs for an authoritative, up-to-date, self contained, and comprehensive account of the rapidly growing field of basic hypergeometric series, or q-series. Simplicity, clarity, deductive proofs, thoughtfully designed exercises, and useful appendices are among its strengths. The first five chapters cover basic hypergeometric series and integrals, whilst the next five are devoted to applications in various areas including Askey-Wilson integrals and orthogonal polynomials, partitions in number theory, multiple series, orthogonal polynomials in several variables, and generating functions. Chapters 9-11 are new for the second edition, the final chapter containing a simplified version of the main elements of the theta and elliptic hypergeometric series as a natural extension of the single-base q-series. Some sections and exercises have been added to reflect recent developments, and the Bibliography has been revised to maintain its comprehensiveness.
The authors explain in this work a new approach to observing and controlling linear systems whose inputs and outputs are not fixed in advance. They cover a class of linear time-invariant state/signal system that is general enough to include most of the standard classes of linear time-invariant dynamical systems, but simple enough that it is easy to understand the fundamental principles. They begin by explaining the basic theory of finite-dimensional and bounded systems in a way suitable for graduate courses in systems theory and control. They then proceed to the more advanced infinite-dimensional setting, opening up new ways for researchers to study distributed parameter systems, including linear port-Hamiltonian systems and boundary triplets. They include the general non-passive part of the theory in continuous and discrete time, and provide a short introduction to the passive situation. Numerous examples from circuit theory are used to illustrate the theory.
This comprehensive volume on ergodic control for diffusions highlights intuition alongside technical arguments. A concise account of Markov process theory is followed by a complete development of the fundamental issues and formalisms in control of diffusions. This then leads to a comprehensive treatment of ergodic control, a problem that straddles stochastic control and the ergodic theory of Markov processes. The interplay between the probabilistic and ergodic-theoretic aspects of the problem, notably the asymptotics of empirical measures on one hand, and the analytic aspects leading to a characterization of optimality via the associated Hamilton-Jacobi-Bellman equation on the other, is clearly revealed. The more abstract controlled martingale problem is also presented, in addition to many other related issues and models. Assuming only graduate-level probability and analysis, the authors develop the theory in a manner that makes it accessible to users in applied mathematics, engineering, finance and operations research.
Simplex geometry is a topic generalizing geometry of the triangle and tetrahedron. The appropriate tool for its study is matrix theory, but applications usually involve solving huge systems of linear equations or eigenvalue problems, and geometry can help in visualizing the behaviour of the problem. In many cases, solving such systems may depend more on the distribution of non-zero coefficients than on their values, so graph theory is also useful. The author has discovered a method that in many (symmetric) cases helps to split huge systems into smaller parts. Many readers will welcome this book, from undergraduates to specialists in mathematics, as well as non-specialists who only use mathematics occasionally, and anyone who enjoys geometric theorems. It acquaints the reader with basic matrix theory, graph theory and elementary Euclidean geometry so that they too can appreciate the underlying connections between these various areas of mathematics and computer science.
Mathematical models of bond markets are of interest to researchers working in applied mathematics, especially in mathematical finance. This book concerns bond market models in which random elements are represented by Levy processes. These are more flexible than classical models and are well suited to describing prices quoted in a discontinuous fashion. The book's key aims are to characterize bond markets that are free of arbitrage and to analyze their completeness. Nonlinear stochastic partial differential equations (SPDEs) are an important tool in the analysis. The authors begin with a relatively elementary analysis in discrete time, suitable for readers who are not familiar with finance or continuous time stochastic analysis. The book should be of interest to mathematicians, in particular to probabilists, who wish to learn the theory of the bond market and to be exposed to attractive open mathematical problems.
It is possible to associate a topological space to the category of modules over any ring. This space, the Ziegler spectrum, is based on the indecomposable pure-injective modules. Although the Ziegler spectrum arose within the model theory of modules and plays a central role in that subject, this book concentrates specifically on its algebraic aspects and uses. The central aim is to understand modules and the categories they form through associated structures and dimensions, which reflect the complexity of these, and similar, categories. The structures and dimensions considered arise particularly through the application of model-theoretic and functor-category ideas and methods. Purity and associated notions are central, localisation is an ever-present theme and various types of spectrum play organising roles. This book presents a unified, coherent account of material which is often presented from very different viewpoints and clarifies the relationships between these various approaches.
Internationally recognised researchers look at developing trends in combinatorics with applications in the study of words and in symbolic dynamics. They explain the important concepts, providing a clear exposition of some recent results, and emphasise the emerging connections between these different fields. Topics include combinatorics on words, pattern avoidance, graph theory, tilings and theory of computation, multidimensional subshifts, discrete dynamical systems, ergodic theory, numeration systems, dynamical arithmetics, automata theory and synchronised words, analytic combinatorics, continued fractions and probabilistic models. Each topic is presented in a way that links it to the main themes, but then they are also extended to repetitions in words, similarity relations, cellular automata, friezes and Dynkin diagrams. The book will appeal to graduate students, research mathematicians and computer scientists working in combinatorics, theory of computation, number theory, symbolic dynamics, tilings and stringology. It will also interest biologists using text algorithms.
The study of graph structure has advanced in recent years with great strides: finite graphs can be described algebraically, enabling them to be constructed out of more basic elements. Separately the properties of graphs can be studied in a logical language called monadic second-order logic. In this book, these two features of graph structure are brought together for the first time in a presentation that unifies and synthesizes research over the last 25 years. The authors not only provide a thorough description of the theory, but also detail its applications, on the one hand to the construction of graph algorithms, and, on the other to the extension of formal language theory to finite graphs. Consequently the book will be of interest to graduate students and researchers in graph theory, finite model theory, formal language theory, and complexity theory.
Using Bishop's work on constructive analysis as a framework, this monograph gives a systematic, detailed and general constructive theory of probability theory and stochastic processes. It is the first extended account of this theory: almost all of the constructive existence and continuity theorems that permeate the book are original. It also contains results and methods hitherto unknown in the constructive and nonconstructive settings. The text features logic only in the common sense and, beyond a certain mathematical maturity, requires no prior training in either constructive mathematics or probability theory. It will thus be accessible and of interest, both to probabilists interested in the foundations of their speciality and to constructive mathematicians who wish to see Bishop's theory applied to a particular field.
Constructive mathematics - mathematics in which 'there exists' always means 'we can construct' - is enjoying a renaissance. fifty years on from Bishop's groundbreaking account of constructive analysis, constructive mathematics has spread out to touch almost all areas of mathematics and to have profound influence in theoretical computer science. This handbook gives the most complete overview of modern constructive mathematics, with contributions from leading specialists surveying the subject's myriad aspects. Major themes include: constructive algebra and geometry, constructive analysis, constructive topology, constructive logic and foundations of mathematics, and computational aspects of constructive mathematics. A series of introductory chapters provides graduate students and other newcomers to the subject with foundations for the surveys that follow. Edited by four of the most eminent experts in the field, this is an indispensable reference for constructive mathematicians and a fascinating vista of modern constructivism for the increasing number of researchers interested in constructive approaches.
Compound renewal processes (CRPs) are among the most ubiquitous models arising in applications of probability. At the same time, they are a natural generalization of random walks, the most well-studied classical objects in probability theory. This monograph, written for researchers and graduate students, presents the general asymptotic theory and generalizes many well-known results concerning random walks. The book contains the key limit theorems for CRPs, functional limit theorems, integro-local limit theorems, large and moderately large deviation principles for CRPs in the state space and in the space of trajectories, including large deviation principles in boundary crossing problems for CRPs, with an explicit form of the rate functionals, and an extension of the invariance principle for CRPs to the domain of moderately large and small deviations. Applications establish the key limit laws for Markov additive processes, including limit theorems in the domains of normal and large deviations.
The goal of this monograph is to develop Hopf theory in the setting of a real reflection arrangement. The central notion is that of a Coxeter bialgebra which generalizes the classical notion of a connected graded Hopf algebra. The authors also introduce the more structured notion of a Coxeter bimonoid and connect the two notions via a family of functors called Fock functors. These generalize similar functors connecting Hopf monoids in the category of Joyal species and connected graded Hopf algebras. This monograph opens a new chapter in Coxeter theory as well as in Hopf theory, connecting the two. It also relates fruitfully to many other areas of mathematics such as discrete geometry, semigroup theory, associative algebras, algebraic Lie theory, operads, and category theory. It is carefully written, with effective use of tables, diagrams, pictures, and summaries. It will be of interest to students and researchers alike.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.