Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The principal intent of this monograph is to present in a systematic and self-con tained fashion the basic tenets, ideas and results of a framework for the consistent unification of relativity and quantum theory based on a quantum concept of spacetime, and incorporating the basic principles of the theory of stochastic spaces in combination with those of Born's reciprocity theory. In this context, by the physicial consistency of the present framework we mean that the advocated approach to relativistic quantum theory relies on a consistent probabilistic interpretation, which is proven to be a direct extrapolation of the conventional interpretation of nonrelativistic quantum mechanics. The central issue here is that we can derive conserved and relativistically convariant probability currents, which are shown to merge into their nonrelativistic counterparts in the nonrelativistic limit, and which at the same time explain the physical and mathe matical reasons behind the basic fact that no probability currents that consistently describe pointlike particle localizability exist in conventional relativistic quantum mechanics. Thus, it is not that we dispense with the concept oflocality, but rather the advanced central thesis is that the classical concept of locality based on point like localizability is inconsistent in the realm of relativistic quantum theory, and should be replaced by a concept of quantum locality based on stochastically formulated systems of covariance and related to the aforementioned currents.
In this monograph, nonequilibrium statistical mechanics is developed by means of ensemble methods on the basis of the Boltzmann equation, the generic Boltzmann equations for classical and quantum dilute gases, and a generalised Boltzmann equation for dense simple fluids. The theories are developed in forms parallel with the equilibrium Gibbs ensemble theory in a way fully consistent with the laws of thermodynamics. The generalised hydrodynamics equations are the integral part of the theory and describe the evolution of macroscopic processes in accordance with the laws of thermodynamics of systems far removed from equilibrium. Audience: This book will be of interest to researchers in the fields of statistical mechanics, condensed matter physics, gas dynamics, fluid dynamics, rheology, irreversible thermodynamics and nonequilibrium phenomena.
This understandable and inspiring book brings together both theorists and experimentalists working on the properties of nuclear and hadronic matter produced in heavy-ion collisions in various energy ranges. The main focus is on experimental signals revealing the possible phase changes of the matter.
From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970's by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized.
This volume represents the proceedings of the Ninth Annual MaxEnt Workshop, held at Dartmouth College in Hanover, New Hampshire, on August 14-18, 1989. These annual meetings are devoted to the theory and practice of Bayesian Probability and the Maximum Entropy Formalism. The fields of application exemplified at MaxEnt '89 are as diverse as the foundations of probability theory and atmospheric carbon variations, the 1987 Supernova and fundamental quantum mechanics. Subjects include sea floor drug absorption in man, pressures, neutron scattering, plasma equilibrium, nuclear magnetic resonance, radar and astrophysical image reconstruction, mass spectrometry, generalized parameter estimation, delay estimation, pattern recognition, heave responses in underwater sound and many others. The first ten papers are on probability theory, and are grouped together beginning with the most abstract followed by those on applications. The tenth paper involves both Bayesian and MaxEnt methods and serves as a bridge to the remaining papers which are devoted to Maximum Entropy theory and practice. Once again, an attempt has been made to start with the more theoretical papers and to follow them with more and more practical applications. Papers number 29, 30 and 31, by Kesaven, Seth and Kapur, represent a somewhat different, perhaps even "unorthodox" viewpoint, and are included here even though the editor and, indeed many in the audience at Dartmouth, disagreed with their content. I feel that scientific disagreements are essential in any developing field, and often lead to a deeper understanding.
This book presents the fundamentals of stochastic thermodynamics, one of the most central subjects in non-equilibrium statistical mechanics. It also explores many recent advances, e.g., in information thermodynamics, the thermodynamic uncertainty relation, and the trade-off relation between efficiency and power.The content is divided into three main parts, the first of which introduces readers to fundamental topics in stochastic thermodynamics, e.g., the basics of stochastic processes, the fluctuation theorem and its variants, information thermodynamics, and large deviation theory. In turn, parts two and three explore advanced topics such as autonomous engines (engines not controlled externally) and finite speed engines, while also explaining the key concepts from recent stochastic thermodynamics theory that are involved.To fully benefit from the book, readers only need an undergraduate-level background in statistical mechanics and quantum mechanics; no backgroundin information theory or stochastic processes is needed. Accordingly, the book offers a valuable resource for early graduate or higher-level readers who are unfamiliar with this subject but want to keep up with the cutting-edge research in this field. In addition, the author¿s vivid descriptions interspersed throughout the book will help readers grasp ¿living¿ research developments and begin their own research in this field.
This book presents a comprehensive account of the renormalization-group (RG) method and its extension, the doublet scheme, in a geometrical point of view. It extract long timescale macroscopic/mesoscopic dynamics from microscopic equations in an intuitively understandable way rather than in a mathematically rigorous manner and introduces readers to a mathematically elementary, but useful and widely applicable technique for analyzing asymptotic solutions in mathematical models of nature. The book begins with the basic notion of the RG theory, including its connection with the separation of scales. Then it formulates the RG method as a construction method of envelopes of the naive perturbative solutions containing secular terms, and then demonstrates the formulation in various types of evolution equations. Lastly, it describes successful physical examples, such as stochastic and transport phenomena including second-order relativistic as well as nonrelativistic fluid dynamics with causality and transport phenomena in cold atoms, with extensive numerical expositions of transport coefficients and relaxation times. Requiring only an undergraduate-level understanding of physics and mathematics, the book clearly describes the notions and mathematical techniques with a wealth of examples. It is a unique and can be enlightening resource for readers who feel mystified by renormalization theory in quantum field theory.
To understand phenomena in nature, it is important to focus not only on properties of stationary states, but also their changes in time, that is, the dynamics between bistable states. This book reviews the mechanics of first-order phase transitions and discusses relaxation and collapses of metastable states from various viewpoints, including Kramers' method for the lifetime of metastability, Langer's analysis on the singularity, effects of thermal fluctuation studied by Neel and Brown, and eigenvalue structures of the transfer-matrix for the phase transitions. The book also goes into the mechanics of metastability in quantum systems from the viewpoints of the eigenvalue problem of the Hamiltonian and the Liouvillian for a dynamical process and discusses relations between quantum tunneling processes and metastability therein. Lastly, the coercivity of magnets consisting of an ensemble of grains is reviewed.The book is beneficial for those new in the field as a primer on first-order phase transition from modern perspectives. The comprehensive content offers overviews of related topics and allows readers to quickly catch up with developments in the field.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.