Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Provides a clear and factual picture of the status of renewable energy and its capabilities today. The book covers all areas of renewable energy, starting from biomass energy and hydropower and proceeding to wind, solar and geothermal energy before ending with an overview of ocean energy.
Volume 2 of this three-part series presents the quantization of classical field theory using the path integral formalism.For this volume the target audience is students who wish to learn about relativistic quantum field theory applied to particle physics, however, it is still very accessible and useful for students of condensed matter. This volume begins with the introduction of the path integral formalism for non-relativistic quantum mechanics and then, using this as a basis, extends the formalism to quantum fields with an infinite number of degrees of freedom. Dr. Strickland then discusses how to quantize gauge fields using the Fadeev-Popov method and fermionic fields using Grassman algebra. He then presents the path integral formulation of quantum chromodynamics and its renormalization. Finally, he discusses the role played by topological solutions in non-abelian gauge theories.
Considers the importance of nanomaterials and their application in medicine, as well as the significant growth of biomaterials in research fields, introduces the variables law (Rabiee's theory) for the implementation of this research and the establishment of a proper strategy.
The development of man's understanding of planetary motions is the crown jewel of Newtonian mechanics. This book offers a concise but self-contained handbook-length treatment of this historically important topic for students at about the third-year-level of an undergraduate physics curriculum.
Phase transformations are among the most intriguing and technologically useful phenomena in materials, particularly with regard to controlling microstructure.After a review of thermodynamics, this book has chapters on Brownian motion and the diffusion equation, diffusion in solids based on transition-state theory, spinodal decomposition, nucleation and growth, instabilities in solidification, and diffusionless transformations. Each chapter includes exercises whose solutions are available in a separate manual.This book is based on the notes from a graduate course taught in the Centre for Doctoral Training in the Theory and Simulation of Materials. The course was attended by students with undergraduate degrees in physics, mathematics, chemistry, materials science, and engineering. The notes from this course, and this book, were written to accommodate these diverse backgrounds.
Offers a rigorous, physics focused, introduction to set theory that is geared towards natural science majors. The authors present the science major with a robust introduction to set theory, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general.
The Outside the Research Lab series is a testament to the fact that the physics taught to high school and university students IS used in the real world.This book explores the physics and technology inherent to a selection of sports which have caught the author's attention and fascination over the years. Outside the Research Lab, Volume 3 is a path to discovering how less commonly watched sports use physics to optimize performance, diagnose injuries, and increase access to more competitors. It covers Olympic and Paralympic fencing, show jumping horses, and arguably the most brutal of motorsports - drag racing. Stunning images throughout the book and clear, understandable writing are supplemented by offset detail boxes which take the physics concepts to higher levels.Outside the Research Lab, Volume 3 is both for the general interest reader and students in STEM. Lecturers in university physics, materials science, engineering and other sciences will find this an excellent basis for teaching undergraduate students the range of applications for the physics they are learning. There is a vast range of different areas that require expertise in physics...this third volume of Outside the Research Lab shows a few with great detail provided by professionals doing the work.
Optics has been part of scientific enquiry from its beginning and remains a key element of modern science.This book provides a concise treatment of physical optics starting with a brief summary of geometrical optics. Scalar diffraction theory is introduced to describe wave propagation and diffraction effects and provides the basis for Fourier methods for treating more complex diffraction problems. The rest of the book treats the physics underlying some important instruments for spectral analysis and optical metrology, reflection and transmission at dielectric surfaces and the polarization of light. This undergraduate-level text aims to aid understanding of optical applications in physical, engineering and life sciences or more advanced topics in modern optics.
Practically every display technology in use today relies on the flat, energy-efficient construction made possible by liquid crystals.These displays provide visually-crisp, vibrantly-colored images that a short time ago were thought only possible in science fiction. Liquid crystals are known mainly for their use in display technologies, but they also provide many diverse and useful applications: adaptive optics, electro-optical devices, films, lasers, photovoltaics, privacy windows, skin cleansers and soaps, and thermometers. The striking images of liquid crystals changing color under polarized lighting conditions are even on display in many museums and art galleries - true examples of 'science meeting art'. Although liquid crystals provide us with visually stunning displays, fascinating applications, and are a rich and fruitful source of interdisciplinary research, their full potential may yet remain untapped.
Covers essential Microsoft EXCEL (R)'s computational skills while analysing introductory physics projects. Topics of numerical analysis include multiple graphs on the same sheet, calculation of descriptive statistical parameters, a 3-point interpolation, and the Euler and the Runge-Kutter methods to solve equations of motion.
Demonstrates some of the ways in which Microsoft Excel (R) may be used to solve numerical problems in the field of physics. This book shows Excel in action in various areas within physics. The purpose is to show how the power of Excel can be greatly extended and to whet the appetite of readers to get familiar with the power of Visual Basic for Applications.
The ability to arrange precisely designed patterns of nanoparticles into a desired spatial configuration is the key to creating novel nanoscale devices that take advantage of the unique properties of nanomaterials. While two-dimensional arrays of nanoparticles have been demonstrated successfully by various techniques, a controlled way of building ordered arrays of three-dimensional (3D) nanoparticle structures remains challenging. This book describes a new technique called the 'nanoscopic lens' which is able to produce a variety of 3D nano-structures in a controlled manner. This ebook describes the nanoscopic lens technique and how it can serve as the foundation for device development that is not limited to a variety of optical, magnetic and electronic devices, but can also create a wide range of bio-nanoelectronic devices.
This book introduces various 3D printing systems, biomaterials, and cells for organ printing. In view of the latest applications of several 3D printing systems, their advantages and disadvantages are also discussed. A basic understanding of the entire spectrum of organ printing provides pragmatic insight into the mechanisms, methods, and applications of this discipline. Organ printing is being applied in the tissue engineering field with the purpose of developing tissue/organ constructs for the regeneration of both hard (bone, cartilage, osteochondral) and soft tissues (heart). There are other potential application areas including tissue/organ models, disease/cancer models, and models for physiology and pathology, where in vitro 3D multicellular structures developed by organ printing are valuable.
In this book the authors attempt to portray the current status of the supportive care interventions that are possible with photobiomodulation using low level laser therapy (LLLT) in patients undergoing cancer treatment for solid tumours, harmatological malignancies, and head and neck cancers.
While every galaxy in the Universe is interesting just by its very fact of being, the author of this book has selected 60 that possess some unusual qualities that make them of particular interest. These galaxies have complex evolutionary histories, with some having supermassive black holes at their core, while others are powerful radio sources.
Contains an extensive illustration of use of the finite difference method in solving the boundary value problem numerically. A wide class of differential equations are numerically solved in this book. Starting with differential equations of elementary functions like hyperbolic, sine and cosine, the book solves special functions such as Hermite.
Provides an overview of the Standard Model of particle physics including an overview of the discovery and properties of the Higgs boson. The book also summarizes the important investigations into the physics of neutrinos and provides an overview of the interpretation of these studies.
The experimental observation and measurement of ultrashort pulses in waveguides is a hard job and this is the reason and stimulus to create mathematical models for computer simulations, as well as reliable algorithms for treating the governing equations.
Explores the physics and technology inherent to preserving and restoring old forms of transport as well as creating modern transport for today and for future needs. This book provides readers with insight into some of the diverse applications for physics outside of research laboratories.
Jet physics is an incredibly rich subject detailing the narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. This book is a general overview of jet physics for scientists not directly involved in the field. It presents the basic experimental and theoretical problems arising when dealing with jets, and describing the solutions proposed in recent years.
This book is written for students and other interested readers as a look inside the diverse range of applications for physics outside of the scientific research environment. This first volume covers several different areas of the arts and design ranging from stage lighting to sculpting. The author has interviewed experts in each area to explain how physics and technology impact their work. These are all useful examples of how physics encountered in taught courses relates to the real world.
This book looks at the early history of nuclear power, at what happened next, and at its longer-term prospects. The main question is: can nuclear power overcome the problems that have emerged? It was once touted as the ultimate energy source, freeing mankind from reliance on dirty, expensive fossil energy. Sixty years on, nuclear only supplies around 11.5% of global energy and is being challenged by cheaper energy options. While the costs of renewable sources, like wind and solar, are falling rapidly, nuclear costs have remained stubbornly high. Its development has also been slowed by a range of other problems, including a spate of major accidents, security concerns and the as yet unresolved issue of what to do with the wastes that it produces. In response, a new generation of nuclear reactors is being developed, many of them actually revised versions of the ideas first looked at in the earlier phase. Will this new generation of reactors bring nuclear energy to the forefront of energy production in the future?
One hundred years after gravitational waves were first predicted, their first real direct effects were observed in 2015. This is the story of that hunt, and the insight it is producing into an array of topics in modern science, from the creation of the chemical elements to insights into the properties of gravity itself.
Gene therapy as a potential method for treatment of genetic disorders and other malignancies as well as treatment of many cancers has attracted a great amount of attention in recent years.Current research focuses on stable and smart drug/gene delivery systems, including controlled release. Smart nanostructures have been considered as a promising approach when applied to drug and gene delivery systems, and could solve the problems related to the inefficient transfer of medication to the affected cells.
Uses a hands-on approach to nonlinear dynamics using commonly available software, including the free dynamical systems software Xppaut, Matlab and the Maple symbolic algebra system. Detailed instructions for various common procedures, including bifurcation analysis using the version of AUTO embedded in Xppaut, are provided.
Nanomaterials and nanostructures are the original product of nanotechnology, and the key building blocks for enabling technologies. In this context, this book presents a concise overview of the synthesis and characterization methods of nanomaterials and nanostructures, while integrating facets of physics, chemistry, and engineering.
Biophotonic diagnostics/biomedical spectroscopy can revolutionise the medical environment by providing a responsive and objective diagnostic environment. This book aims to explain the fundamentals of the physical techniques used combined with the particular requirements of analysing medical/clinical samples as a resource for any interested party. In addition, it will show the potential of this field for the future of medical science and act as a driver for translation across many different biological problems/questions.
Based on a set of 18 class-tested lectures delivered to fourth-year physics undergraduates at Griffith University in Brisbane, this book book presents new discoveries by the Nobel-prize winning LIGO collaboration.
Examines the forces of nature, and what investigations of these forces can tell us about the world we see about us. The intention of this book is to introduce ideas of how the visible world, and those parts of it that we cannot observe, either because they are too small or too large for our scale of perception, can be understood by consideration of only a few fundamental forces.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.