Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book describes a novel approach to the study of Siegel modular forms of degree two with paramodular level. It introduces the family of stable Klingen congruence subgroups of GSp(4) and uses this family to obtain new relations between the Hecke eigenvalues and Fourier coefficients of paramodular newforms, revealing a fundamental dichotomy for paramodular representations. Among other important results, it includes a complete description of the vectors fixed by these congruence subgroups in all irreducible representations of GSp(4) over a nonarchimedean local field.Siegel paramodular forms have connections with the theory of automorphic representations and the Langlands program, Galois representations, the arithmetic of abelian surfaces, and algorithmic number theory. Providing a useful standard source on the subject, the book will be of interest to graduate students and researchers working in the above fields.
This book is devoted to the study of certain integral representations for Neumann, Kapteyn, Schloemilch, Dini and Fourier series of Bessel and other special functions, such as Struve and von Lommel functions.
Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time.
Focusing on special matrices and matrices which are in some sense `near' to structured matrices, this volume covers a broad range of topics of current interest in numerical linear algebra.
Presenting some recent results on the construction and the moments of Levy-type processes, the focus of this volume is on a new existence theorem, which is proved using a parametrix construction. Levy-type processes behave locally like Levy processes but, in contrast to Levy processes, they are not homogeneous in space.
Presenting a selection of topics in the area of nonlocal and nonlinear diffusions, this book places a particular emphasis on new emerging subjects such as nonlocal operators in stationary and evolutionary problems and their applications, swarming models and applications to biology and mathematical physics, and nonlocal variational problems.
This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier¿Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude). The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H¿-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier¿Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier¿Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier¿Stokes equations with and without surface tension.Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier¿Stokes equations.
This is meant to be Quillen on Quillen as it happened forty years ago, an informal text for a second-semester graduate student on topology, category theory and K-theory, a potential preface to studying Quillen's own landmark papers and an informal glimpse of his great mind.
These lecture notes provide an introduction to the applications of Brownian motion to analysis and more generally, connections between Brownian motion and analysis.
This three-chapter volume concerns the distributions of certain functionals of Levy processes. The first chapter, by Makoto Maejima, surveys representations of the main sub-classes of infinitesimal distributions in terms of mappings of certain Levy processes via stochastic integration.
The main goal of this book is to provide an overview of the state of the art in the mathematical modeling of complex fluids, with particular emphasis on its thermodynamical aspects.
This book sets out an account of the tools which Frobenius used to discover representation theory for nonabelian groups and describes its modern applications.
Collecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds.
Presents an introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This book addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, and moment maps.
The central theme of this reference book is the metric geometry of complex analysis in several variables.
Providing an introduction to isogeometric methods with a focus on their mathematical foundations, this book is composed of four chapters, each devoted to a topic of special interests for isogeometric methods and their theoretical understanding.
Presenting a range of substantive applied problems within Bayesian Statistics along with their Bayesian solutions, this book arises from a research program at CIRM in France in the second semester of 2018, which supported Kerrie Mengersen as a visiting Jean-Morlet Chair and Pierre Pudlo as the local Research Professor.
Riemannian, symplectic and complex geometry are often studied by means ofsolutions to systems ofnonlinear differential equations, such as the equa tions of geodesics, minimal surfaces, pseudoholomorphic curves and Yang Mills connections.
This text deals with A1-homotopy theory over a base field, i.e., with the natural homotopy theory associated to the category of smooth varieties over a field in which the affine line is imposed to be contractible.
The contributions cover not only the classical Navier-Stokes equations for an incompressible Newtonian fluid, but also generalized Newtonian fluids, fluids interacting with particles and with solids, and stochastic models.
Pluripotential theory is a very powerful tool in geometry, complex analysis and dynamics. This CIME course focused on complex Monge-Ampere equations, applications of pluripotential theory to Kahler geometry and algebraic geometry and to holomorphic dynamics.
This is the third volume in the Paris-Princeton Lectures in Financial Mathematics, which publishes, on an annual basis, cutting-edge research in self-contained, expository articles from outstanding specialists, both established and upcoming.
Written by leading experts in an emerging field, this book offers a unique view of the theory of stochastic partial differential equations, with lectures on the stationary KPZ equation, fully nonlinear SPDEs, and random data wave equations.
Mumford's famous "Red Book" gives a simple, readable account of the basic objects of algebraic geometry, preserving as much as possible their geometric flavor and integrating this with the tools of commutative algebra.
This volumebrings together four lecture courses on modern aspects of water waves. Thelectures provide a useful source for those who want to begin to investigate howmathematics can be used to improve our understanding of water wave phenomena.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.