Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This volume is devoted to a systematic study of the Banach algebra of the convolution operators of a locally compact group. Inspired by classical Fourier analysis we consider operators on Lp spaces, arriving at a description of these operators and Lp versions of the theorems of Wiener and Kaplansky-Helson.
This volume provides a wide-ranging survey of, and many new results on, various important typesof ideal factorization actively investigated by several authors in recent years. Examples of domains studied include (1) those with weak factorization, in which each nonzero, nondivisorial ideal can be factored as the product of its divisorial closure and a product of maximal ideals and (2) those with pseudo-Dedekind factorization, in which each nonzero, noninvertible ideal can be factored as the product of an invertible ideal with a product of pairwise comaximal prime ideals. Prüfer domains play a central role in our study, but many non-Prüfer examples are considered as well.
Using an elegant mixture of geometry, graph theory and linear analysis, this monograph completely solves a problem lying at the interface of Isogeometric Analysis (IgA) and Finite Element Methods (FEM).
These lecture notes provide a self-contained introduction to regularity theory for elliptic equations and systems in divergence form. After a short review of some classical results on everywhere regularity for scalar-valued weak solutions, the presentation focuses on vector-valued weak solutions to a system of several coupled equations.
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schroedinger equations are given.
Providing an introduction to both classical and modern techniques in projective algebraic geometry, this monograph treats the geometrical properties of varieties embedded in projective spaces, their secant and tangent lines, the behavior of tangent linear spaces, the algebro-geometric and topological obstructions to their embedding into smaller projective spaces, and the classification of extremal cases. It also provides a solution of Hartshorne¿s Conjecture on Complete Intersections for the class of quadratic manifolds and new short proofs of previously known results, using the modern tools of Mori Theory and of rationally connected manifolds.The new approach to some of the problems considered can be resumed in the principle that, instead of studying a special embedded manifold uniruled by lines, one passes to analyze the original geometrical property on the manifold of lines passing through a general point and contained in the manifold. Once thisembedded manifold, usually of lower codimension, is classified, one tries to reconstruct the original manifold, following a principle appearing also in other areas of geometry such as projective differential geometry or complex geometry.
In these notes we consider two kinds of nonlinear evolution problems of von Karman type on Euclidean spaces of arbitrary even dimension. Each of these problems consists of a system that results from the coupling of two highly nonlinear partial differential equations, one hyperbolic or parabolic and the other elliptic.
This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics.
The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y.
Predictive theories of phenomena involving phase change with applications in engineering are investigated in this volume, e.g. Many other phase change phenomena such as solid-solid phase change in shape memory alloys and vapor-liquid phase change are also explored.
This book discusses regular powers and symbolic powers of ideals from three perspectives- algebra, combinatorics and geometry - and examines the interactions between them.
Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws.
This monograph covers the theory of Dirichlet forms. It examines the symmetric as well as the non-symmetric case, surveys the theory of hyperfinite Levy processes and summarizes the model-theoretic genericity of hyperfinite stochastic processes theory.
Homogenization is not about periodicity, or Gamma-convergence, but about understanding which effective equations to use at macroscopic level, knowing which partial differential equations govern mesoscopic levels, without using probabilities (which destroy physical reality);
This volume provides an up-to-date overview of the status and perspectives of two areas of research in PDEs, related to hyperbolic conservation laws. The captivating volume contains surveys of recent deep results and provides an overview of further developments and related open problems.
The study of variational problems showing multi-scale behaviour with oscillation or concentration phenomena are a challenging topic of very active research. This volume collects lecture notes devoted to the asymptotic analysis of such problems.
Coverage includes a product-space extension of the Rising Sun lemma, a product-space version of the John-Nirenberg inequality for bounded mean oscillation functions with sharp exponent, and sharp embedding theorems for Muckenhoupt, Gurov-Reshetnyak, and Gehring classes.
This book collects independent contributions on current developments in quantum information theory, a very interdisciplinary field at the intersection of physics, computer science and mathematics. Making intense use of the most advanced concepts from each discipline, the authors give in each contribution pedagogical introductions to the main concepts underlying their present research and present a personal perspective on some of the most exciting open problems.Keeping this diverse audience in mind, special efforts have been made to ensure that the basic concepts underlying quantum information are covered in an understandable way for mathematical readers, who can find there new open challenges for their research. At the same time, the volume can also be of use to physicists wishing to learn advanced mathematical tools, especially of differential and algebraic geometric nature.
The aim of this book is to describe Calabi's original work on Kahler immersions of Kahler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems.
The goal of this monograph is to prove that any solution of the Cauchy problem for the capillary-gravity water waves equations, in one space dimension, with periodic, even in space, small and smooth enough initial data, is almost globally defined in time on Sobolev spaces, provided the gravity-capillarity parameters are taken outside an exceptional subset of zero measure. In contrast to the many results known for these equations on the real line, with decaying Cauchy data, one cannot make use of dispersive properties of the linear flow. Instead, a normal forms-based procedure is used, eliminating those contributions to the Sobolev energy that are of lower degree of homogeneity in the solution. Since the water waves equations form a quasi-linear system, the usual normal forms approaches would face the well-known problem of losses of derivatives in the unbounded transformations. To overcome this, after a paralinearization of the capillary-gravity water waves equations,we perform several paradifferential reductions to obtain a diagonal system with constant coefficient symbols, up to smoothing remainders. Then we start with a normal form procedure where the small divisors are compensated by the previous paradifferential regularization. The reversible structure of the water waves equations, and the fact that we seek solutions even in space, guarantees a key cancellation which prevents the growth of the Sobolev norms of the solutions.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.