Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Dynamics of Molecular Excitons provides a comprehensive, but concise description of major theories on the dynamics of molecular excitons, intended to serve as a self-contained resource on the topic. Designed to help those new to this area gain proficiency in this field, experts will also find the book useful in developing a deeper understanding of the subject. The starting point of the book is the standard microscopic definition of molecular Hamiltonians presented in commonly accepted modern quantum mechanical notations. Major assumptions and approximations involved in constructing Frenkel-type exciton Hamiltonians, which are well established, but are often hidden under arcane notations and approximations of old publications, are presented in detail. This will help quantum chemists understand the major assumptions involved in the definition of commonly used exciton models. Rate theories of exciton dynamics, such as F├╢rster and Dexter theories and their modern generalizations, are presented in a unified and detailed manner. In addition, important aspects that are often neglected, such as local field effect and the role of fluctuating environments, are discussed. Various quantum dynamics methods allowing coherent dynamics of excitons are presented in a systematic manner in the context of quantum master equations or path integral formalisms. The author also provides a detailed theoretical explanation for the major spectroscopic techniques probing exciton dynamics, including modern two-dimensional electronic spectroscopy, with a critical assessment of the implications of these spectroscopic measurements. Finally, the book includes a brief overview of major applications including an explanation of organic photovoltaic materials and natural light harvesting complexes. Covers major theories of exciton dynamics in a consciously concise and easily readable wayBridges the gap between quantum dynamics working with phenomenological exciton Hamiltonian and quantum chemistry construct reliable models amenable for dynamics calculations from ab initio calculationsExplores modern nonlinear electronic spectroscopy techniques to probe exciton dynamics, showing how it is applied
Metal Nanostructures for Photonics presents updates on the development of materials with enhanced optical properties and the demand for novel metal-dielectric nanocomposites and nanostructured materials. The book covers various aspects of metal-dielectric nanocomposites and metallic-nanostructures and illustrates techniques used to prepare and characterize materials and their physical properties. It focuses on three main sections, nanocomposites with enhanced luminescence properties due to contributions of metal nanoparticles hosted in photonic glasses, near and far-field optical phenomena, and the optical response of single nanoparticles that reveal quantum phenomena in the nanoscale, amongst other topics. This book will serve as an important research reference for materials scientists who want to learn more on how a range of metallic nanostructured materials are used in photonics. Sets out the properties of a range of metal-dielectric nanostructures and nanocomposites, along with the use cases for each in photonicsDiscusses the pros and cons of using different metallic nanostructures for different photonic applicationsIncludes case studies that illustrate how metallic nanostructures have successfully been applied in photonics
Nanocomposites for Photonics and Electronics Applications addresses a range of aspects of different nanocomposites and their possible applications to illustrate the techniques used to prepare and characterize them. In addition, the book discusses possible optical, electronic, biophotonics, photonics and renewable energy applications, presenting a panorama of current research in the field of nanostructures for photonics applications. This is an important reference source for academics and industry engineers who are looking to learn more about how nanocomposites can be used to make cheaper, more efficient products in the electronics and photonics fields.Explores the use of different types of namorphous and crystalline nanocomposites based on fluorides, tellurite, borates and lasersDiscusses the applications of nanocomposites for photonics, biophotonics and renewable energy applicationsAssesses the advantages and disadvantages of using different types of nanocomposite in the design of different electronic and photonic products
Light, Plasmonics and Particles focuses on the fundamental science and engineering applications of light scattering by particles, aerosols and hydrosols, and of localized plasmonics. The book is intended to be a self-contained and coherent resource volume for graduate students and professionals in the disciplines of materials science, engineering and related disciplines of physics and chemistry. In addition to chapters related to fundamental concepts, it includes detailed discussion of different numerical models, experimental systems and applications. In order to develop new devices, processes and applications, we need to advance our understanding of light-matter interactions. For this purpose, we need to have a firm grasp of electromagnetic wave phenomena, and absorption and scattering of waves by different size and shape geometrical objects. In addition, understanding of tunneling of waves based on electron and lattice vibrations and coupling with the thermal fluctuations to enhance near-field energy transfer mechanisms are required for the development of future energy harvesting devices and sensors.
On-Chip Photonics: Principles, Technology and Applications reviews the advances of integrated photonic devices and their demonstrated applications. The discussed applications encompass a wide range of cutting-edge technologies, including quantum photonics, lasers on a chip, mid-infrared and overtone spectroscopies, all-optical processing on a chip, logic gates on a chip, and cryptography on a chip. The summaries in the book chapters facilitate an understanding of the field and enable the application of optical waveguides in a variety of optical systems. Overviews of computational tools, material platforms, and suggestions for the realization of on-chip photonic devices are also included
All-Dielectric Nanophotonics aims to review the underlying principles, advances and future directions of research in the field. The book reviews progress in all-dielectric metasurfaces and nanoantennas, new types of excitations, such as magnetic and toroidal modes and associated anapole states. Ultrahigh-Q resonant modes such as bound states in the continuum are covered and the promise of replacing conventional bulky optical elements with nanometer-scale structures with enhanced functionality is discussed. This book is suitable for new entrants to the field as an overview of this research area. Experienced researchers and professionals in the field may also find this book suitable as a reference.
Photoelectrochemical Engineering for Solar Harvesting: Chemistry, Materials, Devices provides an up-to-date appraisal of the photon engineering of innovative catalysts for solar energy harvesting. This book analyzes the overall progress, potential challenges, and the industrialization of new catalysts in the near future. The primary emphasis is on experimental approaches from materials synthesis to device applications, however, there is also an introduction to relevant photochemistry concepts. This book is suitable for materials scientists and chemists who, through the use of photonics, are in continuous pursuit of improving the efficiencies of different devices used to capture solar energy for the generation of sustainable fuel. Sunlight-driven fuel synthesis is the most sustainable and potentially economical option for producing energy vectors through water splitting. Thus, this book focuses on the design of photocatalysts and water oxidation catalysts, as artificial photosynthesis and hydrogen fuel production via water oxidation (in place of fossil fuels) are two promising approaches towards renewable energy.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.