Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the sixth publication in the Perspectives in Logic series, Keith J. Devlin gives a comprehensive account of the theory of constructible sets at an advanced level. The book provides complete coverage of the theory itself, rather than the many and diverse applications of constructibility theory, although applications are used to motivate and illustrate the theory. The book is divided into two parts: Part I (Elementary Theory) deals with the classical definition of the La-hierarchy of constructible sets and may be used as the basis of a graduate course on constructibility theory. and Part II (Advanced Theory) deals with the Ja-hierarchy and the Jensen 'fine-structure theory'.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the first publication in the Perspectives in Logic series, Pour-El and Richards present the first graduate-level treatment of computable analysis within the tradition of classical mathematical reasoning. The book focuses on the computability or noncomputability of standard processes in analysis and physics. Topics include classical analysis, Hilbert and Banach spaces, bounded and unbounded linear operators, eigenvalues, eigenvectors, and equations of mathematical physics. The work is self-contained, and although it is intended primarily for logicians and analysts, it should also be of interest to researchers and graduate students in physics and computer science.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the second publication in the Perspectives in Logic series, is an almost self-contained introduction to higher recursion theory, in which the reader is only assumed to know the basics of classical recursion theory. The book is divided into four parts: hyperarithmetic sets, metarecursion, a-recursion, and E-recursion. This text is essential reading for all researchers in the field.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Stability theory was introduced and matured in the 1960s and 1970s. Today stability theory influences and is influenced by number theory, algebraic group theory, Riemann surfaces, and representation theory of modules. There is little model theory today that does not involve the methods of stability theory. In this volume, the fourth publication in the Perspectives in Logic series, Steven Buechler bridges the gap between a first-year graduate logic course and research papers in stability theory. The book prepares the student for research in any of today's branches of stability theory, and gives an introduction to classification theory with an exposition of Morley's Categoricity Theorem.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the fifth publication in the Perspectives in Logic series, studies set-theoretic independence results (independence from the usual set-theoretic ZFC axioms), in particular for problems on the continuum. The author gives a complete presentation of the theory of proper forcing and its relatives, starting from the beginning and avoiding the metamathematical considerations. No prior knowledge of forcing is required. The book will enable a researcher interested in an independence result of the appropriate kind to have much of the work done for them, thereby allowing them to quote general results.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the tenth publication in the Perspectives in Logic series, Jens E. Fenstad takes an axiomatic approach to present a unified and coherent account of the many and various parts of general recursion theory. The main core of the book gives an account of the general theory of computations. The author then moves on to show how computation theories connect with and unify other parts of general recursion theory. Some mathematical maturity is required of the reader, who is assumed to have some acquaintance with recursion theory. This book is ideal for a second course in the subject.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the eleventh publication in the Perspectives in Logic series, Manuel Lerman presents a systematic study of the interaction between local and global degree theory. He introduces the reader to the fascinating combinatorial methods of recursion theory while simultaneously showing how to use these methods to prove global theorems about degrees. The intended reader will have already taken a graduate-level course in recursion theory, but this book will also be accessible to those with some background in mathematical logic and a feeling for computability. It will prove a key reference to enable readers to easily locate facts about degrees and it will direct them to further results.
Computable structure theory studies the relative complexity of mathematical structures. Written by a contemporary expert, this is the first full monograph on the subject in 20 years. Aimed at graduate students and researchers in mathematical logic, it brings the main results and techniques in the field together into a coherent framework.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the third publication in the Perspectives in Logic series, is a much-needed monograph on the metamathematics of first-order arithmetic. The authors pay particular attention to subsystems (fragments) of Peano arithmetic and give the reader a deeper understanding of the role of the axiom schema of induction and of the phenomenon of incompleteness. The reader is only assumed to know the basics of mathematical logic, which are reviewed in the preliminaries. Part I develops parts of mathematics and logic in various fragments. Part II is devoted to incompleteness. Finally, Part III studies systems that have the induction schema restricted to bounded formulas (bounded arithmetic).
What are the appropriate axioms for mathematics? Through a series of case studies, this volume examines these axioms to prove particular theorems in core areas including algebra, analysis, and topology, focusing on the language of second-order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics.
Admissible set theory is a major source of interaction between model theory, recursion theory and set theory. This volume presents the basic facts about admissible sets and admissible ordinals in a way that makes them accessible to logic students and specialists alike.
In this volume the authors bring together several directions of work in model theory between the late 1950s and early 1980s. It contains expository papers by pre-eminent researchers on advanced topics in model theory. Many chapters can be read independently.
The theory set out in this volume is the result of the meeting and common development of two currents of mathematical research: descriptive set theory and recursion theory. The author develops a general theory from which the results of both areas can be derived, making the common themes clear.
This introduction to first order stability theory, organized around the spectrum problem, contains the first publication of complete proofs of the Vaught conjecture for -stable theories and Shelah's infamous example showing the necessity of his methods to solve the conjecture.
Pure inductive logic is the study of rational probability treated as a branch of mathematical logic. This monograph, the first devoted to this approach, brings together the key results from the past seventy years plus the main contributions of the authors and their collaborators over the last decade to present a comprehensive account of the discipline within a single unified context. The exposition is structured around the traditional bases of rationality, such as avoiding Dutch Books, respecting symmetry and ignoring irrelevant information. The authors uncover further rationality concepts, both in the unary and in the newly emerging polyadic languages, such as conformity, spectrum exchangeability, similarity and language invariance. For logicians with a mathematical grounding, this book provides a complete self-contained course on the subject, taking the reader from the basics up to the most recent developments. It is also a useful reference for a wider audience from philosophy and computer science.
Written by acknowledged experts, for advanced students and researchers in mathematical logic and computer science, this volume provides a detailed, self-contained coverage of proof theory in both classical and constructive arithmetics, up to finitely iterated inductive definitions. Deep connections with computability, complexity and program extraction form the principal themes.
This handbook with exercises reveals in formalisms, hitherto mainly used for hardware and software design and verification, unexpected mathematical beauty. The lambda calculus forms a prototype universal programming language, which in its untyped version is related to Lisp, and was treated in the first author's classic The Lambda Calculus (1984). The formalism has since been extended with types and used in functional programming (Haskell, Clean) and proof assistants (Coq, Isabelle, HOL), used in designing and verifying IT products and mathematical proofs. In this book, the authors focus on three classes of typing for lambda terms: simple types, recursive types and intersection types. It is in these three formalisms of terms and types that the unexpected mathematical beauty is revealed. The treatment is authoritative and comprehensive, complemented by an exhaustive bibliography, and numerous exercises are provided to deepen the readers' understanding and increase their confidence using types.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.