Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The second of two volumes presenting papers from an international conference on analytic number theory. The two volumes contain 50 papers, with an emphasis on topics such as sieves, related combinatorial aspects, multiplicative number theory, additive number theory, and Riemann zeta-function.
This monograph systematically explores the theory of rational maps between spheres in complex Euclidean spaces and its connections to other areas of mathematics. Synthesizing research from the last forty years, the author aims for accessibility by balancing abstract concepts with concrete examples. Numerous computations are worked out in detail, and more than 100 optional exercises are provided throughout for readers wishing to better understand challenging material.The text begins by presenting core concepts in complex analysis and a wide variety of results about rational sphere maps. The subsequent chapters discuss combinatorial and optimization results about monomial sphere maps, groups associated with rational sphere maps, relevant complex and CR geometry, and some geometric properties of rational sphere maps. Fifteen open problems appear in the final chapter, with references provided to appropriate parts of the text. These problemswill encourage readers to apply the material to future research.Rational Sphere Maps will be of interest to researchers and graduate students studying several complex variables and CR geometry. Mathematicians from other areas, such as number theory, optimization, and combinatorics, will also find the material appealing.See the author¿s research web page for a list of typos, clarifications, etc.: https://faculty.math.illinois.edu/~jpda/research.html
Subanalytic and semialgebraic sets were introduced for topological and systematic investigations of real analytic and algebraic sets. One of the author's purposes is to show that almost all (known and unknown) properties of subanalytic and semialgebraic sets follow abstractly from some fundamental axioms. Another is to develop methods of proof that use finite processes instead of integration of vector fields. The proofs are elementary, but the results obtained are new and significant - for example, for singularity theorists and topologists. Further, the new methods and tools developed provide solid foundations for further research by model theorists (logicians) who are interested in applications of model theory to geometry. A knowledge of basic topology is required.
On Lack of Effectiveness in Semi-algebraic Geometry.- A simple constructive proof of Canonical Resolution of Singularities.- Local Membership Problems for Polynomial Ideals.- Un Algorithme pour le Calcul des Résultants.- On algorithms for real algebraic plane curves.- Duality methods for the membership problem.- Exemples d'ensembles de Points en Position Uniforme.- Efficient Algorithms and Bounds for Wu-Ritt Characteristic Sets.- Noetherian Properties and Growth of some Associative Algebras.- Codes and Elliptic Curves.- Algorithmes - disons rapides - pour la décomposition d'une variété algébrique en composantes irréductibles et équidimensionnelles.- Complexity of Solving Systems of Linear Equations over the Rings of Differential Operators.- Membership problem, Representation problem and the Computation of the Radical for one-dimensional Ideals.- On the Complexity of Zero-dimensional Algebraic Systems.- A Single Exponential Bound on the Complexity of Computing Gröbner Bases of Zero Dimensional Ideals.- Algorithms for a Multiple Algebraic Extension.- Elementary constructive theory of ordered fields.- Effective real Nullstellensatz and variants.- Algorithms for the Solution of Systems of Linear Equations in Commutative Rings.- Une conjecture sur les anneaux de Chow A(G, ?) renforcée par un calcul formel.- Construction de courbes de genre 2 à partir de leurs modules.- Computing Syzygies à la Gau?-Jordan.- The non-scalar Model of Complexity in Computational Geometry.- Géométrie et Interpretations Génériques, un Algorithme.- Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms.- The tangent cone algorithm and some applications to local algebraic geometry.- Effective Methods for Systems of Algebraic Partial Differential Equations.- Finding roots of equations involving functions defined by first order algebraic differential equations.- Some Effective Methods in the Openness of Loci for Cohen-Macaulay and Gorenstein Properties.- Sign determination on zero dimensional sets.- A Classification of Finite-dimensional Monomial Algebras.- An algorithm related to compactifications of adjoint groups.- Deciding Consistency of Systems of Polynomial in Exponent Inequalities in Subexponential Time.
On Convex Combinations of Unitary Operators in C*-Algebras.- Approximately Inner Derivations, Decompositions and Vector Fields of Simple C*-Algebras.- Derivations in Commutative C*-Algebras.- Representation of Quantum Groups.- Automorphism Groups and Covariant Irreducible Representations.- Proper Actions of Groups on C*-Algebras.- On the Baum-Connes Conjecture.- On Primitive Ideal Spaces of C*-Algebras over Certain Locally Compact Groupoids.- On Sequences of Jones' Projections.- The Powers' Binary Shifts on the Hyperfinite Factor of Type II1.- Index Theory for Type III Factors.- Relative Entropy of a Fixed Point Algebra.- Jones Index Theory for C*-Algebras.- Three Tensor Norms for Operator Spaces.- Extension Problems for Maps on Operator Systems.- Multivariable Toeplitz Operators and Index Theory.- On Maximality of Analytic Subalgebras Associated with Flow in von Neumann Algebras.- Reflections Relating a von Neumann Algebra and Its Commutant.- Normal AW*-Algebras.
This book provides an overview of the latest progress on rationality questions in algebraic geometry. It discusses new developments such as universal triviality of the Chow group of zero cycles, various aspects of stable birationality, cubic and Fano fourfolds, rationality of moduli spaces and birational invariants of group actions on varieties, contributed by the foremost experts in their fields.The question of whether an algebraic variety can be parametrized by rational functions of as many variables as its dimension has a long history and played an important role in the history of algebraic geometry. Recent developments in algebraic geometry have made this question again a focal point of research and formed the impetus to organize a conference in the series of conferences on the island of Schiermonnikoog. The book follows in the tradition of earlier volumes, which originated from conferences on the islands Texel and Schiermonnikoog.
This monograph provides a state-of-the-art, self-contained account on the effectiveness of the method of boundary layer potentials in the study of elliptic boundary value problems with boundary data in a multitude of function spaces. Many significant new results are explored in detail, with complete proofs, emphasizing and elaborating on the link between the geometric measure-theoretic features of an underlying surface and the functional analytic properties of singular integral operators defined on it. Graduate students, researchers, and professionals interested in a modern account of the topic of singular integral operators and boundary value problems - as well as those more generally interested in harmonic analysis, PDEs, and geometric analysis - will find this text to be a valuable addition to the mathematical literature.
In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new, and the authors also elucidate optimal ranges for problems with fractional regularity data.The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator. Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions.
The purpose of this monograph is to provide a systematic account of the theory of noncommutative integration in semi-finite von Neumann algebras. It is designed to serve as an introductory graduate level text as well as a basic reference for more established mathematicians with interests in the continually expanding areas of noncommutative analysis and probability. Its origins lie in two apparently distinct areas of mathematical analysis: the theory of operator ideals going back to von Neumann and Schatten and the general theory of rearrangement invariant Banach lattices of measurable functions which has its roots in many areas of classical analysis related to the well-known Lp-spaces. A principal aim, therefore, is to present a general theory which contains each of these motivating areas as special cases.
This book presents topics in module theory and ring theory: some, such as Goldie dimension and semiperfect rings are now considered classical and others more specialized, such as dual Goldie dimension, semilocal endomorphism rings, serial rings and modules.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.