Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces.
This book provides a detailed study of nonlinear partial differential equations satisfying certain nonstandard growth conditions which simultaneously extend polynomial, inhomogeneous and fully anisotropic growth.
Originating from graduate topics courses given by the first author, this book functions as a unique text-monograph hybrid that bridges a traditional graduate course to research level representation theory.
Its main result, a theorem proved by the authors and Florian Pop in 2012, describes the absolute Galois group of distinguished semi-local algebraic (and other) extensions of the rational numbers as free products of the free profinite group on countably many generators and local Galois groups.
The subject of local dynamical systems is concerned with the following two questions: 1. Given an nn matrix A, describe the behavior, in a neighborhood of the origin, of the solutions of all systems of di?erential equations having a rest point at the origin with linear part Ax, that is, all systems of the form x ? = Ax+*** , n where x? R and the dots denote terms of quadratic and higher order. 2. Describethebehavior(neartheorigin)ofallsystemsclosetoasystem of the type just described. To answer these questions, the following steps are employed: 1. A normal form is obtained for the general system with linear part Ax. The normal form is intended to be the simplest form into which any system of the intended type can be transformed by changing the coordinates in a prescribed manner. 2. An unfolding of the normal form is obtained. This is intended to be the simplest form into which all systems close to the original s- tem can be transformed. It will contain parameters, called unfolding parameters, that are not present in the normal form found in step 1. vi Preface 3. The normal form, or its unfolding, is truncated at some degree k, and the behavior of the truncated system is studied.
This book is the first serious attempt to gather all of the available theory of "e;nonharmonic Fourier series"e; in one place, combining published results with new results by the authors.
Since the term "e;random ?eld'' has a variety of different connotations, ranging from agriculture to statistical mechanics, let us start by clarifying that, in this book, a random ?eld is a stochastic process, usually taking values in a Euclidean space, and de?ned over a parameter space of dimensionality at least 1. Consequently, random processes de?ned on countable parameter spaces will not 1 appear here. Indeed, even processes on R will make only rare appearances and, from the point of view of this book, are almost trivial. The parameter spaces we like best are manifolds, although for much of the time we shall require no more than that they be pseudometric spaces. With this clari?cation in hand, the next thing that you should know is that this book will have a sequel dealing primarily with applications. In fact, as we complete this book, we have already started, together with KW (Keith Worsley), on a companion volume [8] tentatively entitled RFG-A,or Random Fields and Geometry: Applications. The current volume-RFG-concentrates on the theory and mathematical background of random ?elds, while RFG-A is intended to do precisely what its title promises. Once the companion volume is published, you will ?nd there not only applications of the theory of this book, but of (smooth) random ?elds in general.
A book on any mathematical subject above textbook level is not of much value unless it contains new ideas and new perspectives. Also, the author may be encouraged to include new results, provided that they help the reader gain newinsightsandarepresentedalongwithknownoldresultsinaclearexposition. Itis with this philosophy that Iwrite this volume. The two subjects, Dirichlet series and modular forms, are traditional, but I treat them in both orthodox and unorthodox ways. However, I try to make the book accessible to those who are not familiar with such topics, by including plenty of expository material. More speci?c descriptions of the contents will be given in the Introduction. To some extent, this book has a supplementary nature to my previous book Introduction to the Arithmetic Theory of Automorphic Functions, published by Princeton University Press in 1971, though I do not write the present book with that intent. While the 1971 book grew out of my lectures in various places, the essential points of this new book have never been presented publicly or privately. I hope that it will draw an audience as large as that of the previous book.
The Virasoro algebra is an infinite dimensional Lie algebra that plays an increasingly important role in mathematics and theoretical physics. This book describes some fundamental facts about the representation theory of the Virasoro algebra in a self-contained manner. Topics include the structure of Verma modules and Fock modules, the classification of (unitarizable) Harish-Chandra modules, tilting equivalence, and the rational vertex operator algebras associated to the so-called minimal series representations.Covering a wide range of material, this book has three appendices which provide background information required for some of the chapters. The authors organize fundamental results in a unified way and refine existing proofs. For instance in chapter three, a generalization of Jantzen filtration is reformulated in an algebraic manner, and geometric interpretation is provided. Statements, widely believed to be true, are collated, and results which are known but not verified are proven, such as the corrected structure theorem of Fock modules in chapter eight.This book will be of interest to a wide range of mathematicians and physicists from the level of graduate students to researchers.
Infinite dimensional holomorphy is the study of holomorphic or analytic func- tions over complex topological vector spaces. The terms in this description are easily stated and explained and allow the subject to project itself ini- tially, and innocently, as a compact theory with well defined boundaries. However, a comprehensive study would include delving into, and interacting with, not only the obvious topics of topology, several complex variables theory and functional analysis but also, differential geometry, Jordan algebras, Lie groups, operator theory, logic, differential equations and fixed point theory. This diversity leads to a dynamic synthesis of ideas and to an appreciation of a remarkable feature of mathematics - its unity. Unity requires synthesis while synthesis leads to unity. It is necessary to stand back every so often, to take an overall look at one's subject and ask "e;How has it developed over the last ten, twenty, fifty years? Where is it going? What am I doing?"e; I was asking these questions during the spring of 1993 as I prepared a short course to be given at Universidade Federal do Rio de Janeiro during the following July. The abundance of suit- able material made the selection of topics difficult. For some time I hesitated between two very different aspects of infinite dimensional holomorphy, the geometric-algebraic theory associated with bounded symmetric domains and Jordan triple systems and the topological theory which forms the subject of the present book.
Subject Matter The original title of this book was Tractatus Classico-Quantummechanicus, but it was pointed out to the author that this was rather grandiloquent. In any case, the book discusses certain topics in the interface between classical and quantum mechanics. Mathematically, one looks for similarities between Poisson algebras and symplectic geometry on the classical side, and operator algebras and Hilbert spaces on the quantum side. Physically, one tries to understand how a given quan- tum system is related to its alleged classical counterpart (the classical limit), and vice versa (quantization). This monograph draws on two traditions: The algebraic formulation of quan- tum mechanics and quantum field theory, and the geometric theory of classical mechanics. Since the former includes the geometry of state spaces, and even at the operator-algebraic level more and more submerges itself into noncommutative geometry, while the latter is formally part of the theory of Poisson algebras, one should take the words "e;algebraic"e; and "e;geometric"e; with a grain of salt! There are three central themes. The first is the relation between constructions involving observables on one side, and pure states on the other. Thus the reader will find a unified treatment of certain aspects of the theory of Poisson algebras, oper- ator algebras, and their state spaces, which is based on this relationship.
There are two approaches in the study of differential equations of field theory. The first, finding closed-form solutions, works only for a narrow category of problems. Written by a well-known active researcher, this book focuses on the second, which is to investigate solutions using tools from modern nonlinear analysis.
The main body of this book consists of 106 numbered theorems and a dozen of examples of models of set theory. A large number of additional results is given in the exercises, which are scattered throughout the text. Most exer- cises are provided with an outline of proof in square brackets [ ], and the more difficult ones are indicated by an asterisk. I am greatly indebted to all those mathematicians, too numerous to men- tion by name, who in their letters, preprints, handwritten notes, lectures, seminars, and many conversations over the past decade shared with me their insight into this exciting subject. XI CONTENTS Preface xi PART I SETS Chapter 1 AXIOMATIC SET THEORY I. Axioms of Set Theory I 2. Ordinal Numbers 12 3. Cardinal Numbers 22 4. Real Numbers 29 5. The Axiom of Choice 38 6. Cardinal Arithmetic 42 7. Filters and Ideals. Closed Unbounded Sets 52 8. Singular Cardinals 61 9. The Axiom of Regularity 70 Appendix: Bernays-Godel Axiomatic Set Theory 76 Chapter 2 TRANSITIVE MODELS OF SET THEORY 10. Models of Set Theory 78 II. Transitive Models of ZF 87 12. Constructible Sets 99 13. Consistency of the Axiom of Choice and the Generalized Continuum Hypothesis 108 14. The In Hierarchy of Classes, Relations, and Functions 114 15. Relative Constructibility and Ordinal Definability 126 PART II MORE SETS Chapter 3 FORCING AND GENERIC MODELS 16. Generic Models 137 17. Complete Boolean Algebras 144 18.
The purpose of this book is to provide a careful and accessible account along modern lines of the subject wh ich the title deals, as weIl as to discuss prob- lems of current interest in the field. Unlike many other books on Markov processes, this book focuses on the relationship between Markov processes and elliptic boundary value problems, with emphasis on the study of analytic semigroups. More precisely, this book is devoted to the functional analytic approach to a class of degenerate boundary value problems for second-order elliptic integro-differential operators, called Waldenfels operators, whi:h in- cludes as particular cases the Dirichlet and Robin problems. We prove that this class of boundary value problems provides a new example of analytic semi- groups both in the LP topology and in the topology of uniform convergence. As an application, we construct a strong Markov process corresponding to such a physical phenomenon that a Markovian particle moves both by jumps and continuously in the state space until it "e;dies"e; at the time when it reaches the set where the particle is definitely absorbed. The approach here is distinguished by the extensive use of the techniques characteristic of recent developments in the theory of partial differential equa- tions. The main technique used is the calculus of pseudo-differential operators which may be considered as a modern theory of potentials.
Homological algebra first arose as a language for describing topological prospects of geometrical objects. As with every successful language it quickly expanded its coverage and semantics, and its contemporary applications are many and diverse. This modern approach to homological algebra, by two leading writers in the field, is based on the systematic use of the language and ideas of derived categories and derived functors. Relations with standard cohomology theory (sheaf cohomology, spectral sequences, etc.) are described. In most cases complete proofs are given. Basic concepts and results of homotopical algebra are also presented. The book addresses people who want to learn a modern approach to homological algebra and to use it in their work. For the second edition the authors have made numerous corrections.
Inverse Galois Theory is concerned with the question of which finite groups occur as Galois Groups over a given field. In particular, this includes the question of the structure and the representations of the absolute Galois group of K and also the question about its finite epimorphic images, the so-called inverse problem of Galois theory. In all these areas important progress was made in the last few years. The aim of the book is to give a consistent and reasonably complete survey of these results, with the main emphasis on the rigidity method and its applications. Among others the monograph presents the most successful known existence theorems and construction methods for Galois extensions and solutions of embedding problems combined with a collection of the existing Galois realizations.
1. People were already interested in prime numbers in ancient times, and the first result concerning the distribution of primes appears in Euclid's Elemen ta, where we find a proof of their infinitude, now regarded as canonical. One feels that Euclid's argument has its place in The Book, often quoted by the late Paul ErdOs, where the ultimate forms of mathematical arguments are preserved. Proofs of most other results on prime number distribution seem to be still far away from their optimal form and the aim of this book is to present the development of methods with which such problems were attacked in the course of time. This is not a historical book since we refrain from giving biographical details of the people who have played a role in this development and we do not discuss the questions concerning why each particular person became in terested in primes, because, usually, exact answers to them are impossible to obtain. Our idea is to present the development of the theory of the distribu tion of prime numbers in the period starting in antiquity and concluding at the end of the first decade of the 20th century. We shall also present some later developments, mostly in short comments, although the reader will find certain exceptions to that rule. The period of the last 80 years was full of new ideas (we mention only the applications of trigonometrical sums or the advent of various sieve methods) and certainly demands a separate book.
¿Serre¿s Conjecture¿, for the most part of the second half of the 20th century, - ferred to the famous statement made by J. -P. Serre in 1955, to the effect that one did not know if ?nitely generated projective modules were free over a polynomial ring k[x ,. . . ,x], where k is a ?eld. This statement was motivated by the fact that 1 n the af?ne scheme de?ned by k[x ,. . . ,x] is the algebro-geometric analogue of 1 n the af?ne n-space over k. In topology, the n-space is contractible, so there are only trivial bundles over it. Would the analogue of the latter also hold for the n-space in algebraic geometry? Since algebraic vector bundles over Speck[x ,. . . ,x] corre- 1 n spond to ?nitely generated projective modules over k[x ,. . . ,x], the question was 1 n tantamount to whether such projective modules were free, for any base ?eld k. ItwasquiteclearthatSerreintendedhisstatementasanopenproblemintheshe- theoretic framework of algebraic geometry, which was just beginning to emerge in the mid-1950s. Nowhere in his published writings had Serre speculated, one way or another, upon the possible outcome of his problem. However, almost from the start, a surmised positive answer to Serre¿s problem became known to the world as ¿Serre¿s Conjecture¿. Somewhat later, interest in this ¿Conjecture¿ was further heightened by the advent of two new (and closely related) subjects in mathematics: homological algebra, and algebraic K-theory.
This book is intended as an introduction to the theory of tensor products of Banach spaces. The prerequisites for reading the book are a first course in Functional Analysis and in Measure Theory, as far as the Radon-Nikodym theorem. The book is entirely self-contained and two appendices give addi- tional material on Banach Spaces and Measure Theory that may be unfamil- iar to the beginner. No knowledge of tensor products is assumed. Our viewpoint is that tensor products are a natural and productive way to understand many of the themes of modern Banach space theory and that "e;tensorial thinking"e; yields insights into many otherwise mysterious phenom- ena. We hope to convince the reader of the validity of this belief. We begin in Chapter 1 with a treatment of the purely algebraic theory of tensor products of vector spaces. We emphasize the use of the tensor product as a linearizing tool and we explain the use of tensor products in the duality theory of spaces of operators in finite dimensions. The ideas developed here, though simple, are fundamental for the rest of the book.
Topology occupies a central position in the mathematics of today. One of the most useful ideas to be introduced in the past sixty years is the concept of fibre bundle, which provides an appropriate framework for studying differential geometry and much else. Fibre bundles are examples of the kind of structures studied in fibrewise topology. Just as homotopy theory arises from topology, so fibrewise homotopy the- ory arises from fibrewise topology. In this monograph we provide an overview of fibrewise homotopy theory as it stands at present. It is hoped that this may stimulate further research. The literature on the subject is already quite extensive but clearly there is a great deal more to be done. Efforts have been made to develop general theories of which ordinary homotopy theory, equivariant homotopy theory, fibrewise homotopy theory and so forth will be special cases. For example, Baues [7] and, more recently, Dwyer and Spalinski [53], have presented such general theories, derived from an earlier theory of Quillen, but none of these seem to provide quite the right framework for our purposes. We have preferred, in this monograph, to develop fibre wise homotopy theory more or less ab initio, assuming only a basic knowledge of ordinary homotopy theory, at least in the early sections, but our aim has been to keep the exposition reasonably self-contained.
Many problems in operator theory lead to the consideration ofoperator equa- tions, either directly or via some reformulation. More often than not, how- ever, the underlying space is too 'small' to contain solutions of these equa- tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C*-algebra A that turns out to be small in this sense tradition- ally is enlarged to its (universal) enveloping von Neumann algebra A"e;. This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A"e; is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C*-algebra A becomes inner in A"e;, though 8 may not be inner in A. The transition from A to A"e; however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A"e;. In such a situation, A is typically enlarged by its multiplier algebra M(A).
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.