Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book is an easy-to-read reference providing a link between functional analysis and diffusion processes. More precisely, the book takes readers to a mathematical crossroads of functional analysis (macroscopic approach), partial differential equations (mesoscopic approach), and probability (microscopic approach) via the mathematics needed for the hard parts of diffusion processes. This work brings these three fields of analysis together and provides a profound stochastic insight (microscopic approach) into the study of elliptic boundary value problems.The author does a massive study of diffusion processes from a broad perspective and explains mathematical matters in a more easily readable way than one usually would find. The book is amply illustrated; 14 tables and 141 figures are provided with appropriate captions in such a fashion that readers can easily understand powerful techniques of functional analysis for the study of diffusion processes in probability.The scope of the author's work has been and continues to be powerful methods of functional analysis for future research of elliptic boundary value problems and Markov processes via semigroups. A broad spectrum of readers can appreciate easily and effectively the stochastic intuition that this book conveys. Furthermore, the book will serve as a sound basis both for researchers and for graduate students in pure and applied mathematics who are interested in a modern version of the classical potential theory and Markov processes.For advanced undergraduates working in functional analysis, partial differential equations, and probability, it provides an effective opening to these three interrelated fields of analysis. Beginning graduate students and mathematicians in the field looking for a coherent overview will find the book to be a helpful beginning. This work will be a major influence in a very broad field of study for a long time.
Aimed at graduate and postgraduate students and researchers in mathematics and the applied sciences, this book provides an introductory account of scattering phenomena and a guide to the technical requirements for investigating wave scattering problems. It gathers together the principal mathematical topics which are required when dealing with wave propagation and scattering problems, and indicates how to use the material to develop the required solutions.Both potential and target scattering phenomena are investigated and extensions of the theory to the electromagnetic and elastic fields are provided. Throughout, the emphasis is on concepts and results rather than on the fine detail of proof. A bibliography at the end of each chapter points the interested reader to more detailed proofs of the theorems and suggests directions for further reading.
Author's Note: The material of this book has been reworked and expanded with a lot more detail and published in the author's 2014 book "Upper and Lower Bounds for Stochastic Processes" (Ergebnisse Vol. 60, ISBN 978-3-642-54074-5). That book is much easier to read and covers everything that is in "The Generic Chaining" book in a more detailed and comprehensible way. ************What is the maximum level a certain river is likely to reach over the next 25 years? (Having experienced three times a few feet of water in my house, I feel a keen personal interest in this question. ) There are many questions of the same nature: what is the likely magnitude of the strongest earthquake to occur during the life of a planned building, or the speed of the strongest wind a suspension bridge will have to stand? All these situations can be modeled in the same manner. The value X of the quantity of interest (be it water t level or speed of wind) at time t is a random variable. What can be said about the maximum value of X over a certain range of t? t A collection of random variables (X ), where t belongs to a certain index t set T, is called a stochastic process, and the topic of this book is the study of the supremum of certain stochastic processes, and more precisely to ?nd upper and lower bounds for the quantity EsupX . (0. 1) t t?T Since T might be uncountable, some care has to be taken to de?ne this quantity. For any reasonable de?nition of Esup X we have t t?T EsupX =sup{EsupX ; F?T,F ?nite} , (0. 2) t t t?T t?F an equality that we will take as the de?nition of the quantity Esup X . t t?T Thus, the crucial case for the estimation of the quantity (0.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.