Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This volume consists of papers presented at the Variational Analysis and Aerospace Engineering Workshop II held in Erice, Italy in September 2010 at the International School of Mathematics "Guido Stampacchia". The workshop provided a platform for aerospace engineers and mathematicians (from universities, research centers and industry) to discuss the advanced problems requiring an extensive application of mathematics. The presentations were dedicated to the most advanced subjects in engineering and, in particular to computational fluid dynamics methods, introduction of new materials, optimization in aerodynamics, structural optimization, space missions, flight mechanics, control theory and optimization, variational methods and applications, etc. This book will capture the interest of researchers from both academia and industry.
This book focuses on a development of optimal, flexible, and efficient models and algorithms for cell formation in group technology. Its main aim is to provide a reliable tool that can be used by managers and engineers to design manufacturing cells based on their own preferences and constraints imposed by a particular manufacturing system.
This volume presents a selection of case studies that address a substantial range of optimized object packings (OOP) and their applications. The contributing authors are well-recognized researchers and practitioners. The mathematical modelling and numerical solution aspects of each application case study are presented in sufficient detail. A broad range of OOP problems are discussed: these include various specific and non-standard container loading and object packing problems, as well as the stowing of hazardous and other materials on container ships, data centre resource management, automotive engineering design, space station logistic support, cutting and packing problems with placement constraints, the optimal design of LED street lighting, robust sensor deployment strategies, spatial scheduling problems, and graph coloring models and metaheuristics for packing applications. Novel points of view related to model development and to computational nonlinear, global, mixed integer optimization and heuristic strategies are also discussed.Optimized Packings with Applications will benefit researchers and practitioners working on a broad range of topical engineering and operations research applications. Academics, graduate and post-graduate students in the fields of engineering, applied mathematics, operations research and optimization will also find the book useful, since it discusses a range of advanced model development and solution techniques and tools in the context of real-world applications and new challenges.
Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena.
in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands.
The satellite range scheduling (SRS) problem, an important operations research problem in the aerospace industry consisting of allocating tasks among satellites and Earth-bound objects, is examined in this book.
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory.
This book contains extended, in-depth presentations of the plenary talks from the 16th French-German-Polish Conference on Optimization, held in Kraków, Poland in 2013. Each chapter in this book exhibits a comprehensive look at new theoretical and/or application-oriented results in mathematical modeling, optimization, and optimal control. Students and researchers involved in image processing, partial differential inclusions, shape optimization, or optimal control theory and its applications to medical and rehabilitation technology, will find this book valuable.The first chapter by Martin Burger provides an overview of recent developments related to Bregman distances, which is an important tool in inverse problems and image processing. The chapter by Piotr Kalita studies the operator version of a first order in time partial differential inclusion and its time discretization. In the chapter by Günter Leugering, Jan Soköowski and Antoni ¿ochowski, nonsmooth shape optimization problems for variational inequalities are considered. The next chapter, by Katja Mombaur is devoted to applications of optimal control and inverse optimal control in the field of medical and rehabilitation technology, in particular in human movement analysis, therapy and improvement by means of medical devices. The final chapter, by Nikolai Osmolovskii and Helmut Maurer provides a survey on no-gap second order optimality conditions in the calculus of variations and optimal control, and a discussion of their further development.
including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton's method.
This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools.Space engineering challenges are discussed in the following contexts: ¿Advanced Space Vehicle Design¿Computation of Optimal Low Thrust Transfers¿Indirect Optimization of Spacecraft Trajectories¿Resource-Constrained Scheduling,¿Packing Problems in Space¿Design of Complex Interplanetary Trajectories¿Satellite Constellation Image Acquisition¿Re-entry Test Vehicle Configuration Selection¿Collision Risk Assessment on Perturbed Orbits¿Optimal Robust Design of Hybrid Rocket Engines¿Nonlinear Regression Analysis in Space Engineering¿Regression-Based Sensitivity Analysis and Robust Design¿Low-Thrust Multi-Revolution Orbit Transfers¿Modeling and Optimization of Balance Layout Problems¿Pilot-Induced Oscillations Alleviation¿Modeling and Optimization of Hybrid Transfers to Near-Earth Objects¿Probabilistic Safety Analysis of the Collision Between Space Debris and Satellite¿Flatness-based Low-thrust Trajectory Optimization for Spacecraft Proximity Operations The contributing authors are expert researchers and practitioners in either the space engineering and/or in the applied optimization fields. Researchers and practitioners working in various applied aspects of space engineering will find this book practical and informative. Academics, graduate and post-graduate students in aerospace engineering, applied mathematics, operations research, optimization, and optimal control, will find this book useful.
This book focuses on recent research in modern optimization and its implications in control and data analysis.
Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies.
The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, stochastic models of evolution systems, financial mathematics, risk processes and actuarial mathematics and information security.
Mathematical methods and theories with interdisciplinary applications are presented in this book. The eighteen contributions presented in this Work have been written by eminent scientists; a few papers are based on talks which took place at the International Conference at the Hellenic Artillery School in May 2015. Each paper evaluates possible solutions to long-standing problems such as the solvability of the direct electromagnetic scattering problem, geometric approaches to cyber security, ellipsoid targeting with overlap, non-equilibrium solutions of dynamic networks, measuring ballistic dispersion, elliptic regularity theory for the numerical solution of variational problems, approximation theory for polynomials on the real line and the unit circle, complementarity and variational inequalities in electronics, new two-slope parameterized achievement scalarizing functions for nonlinear multiobjective optimization, and strong and weak convexity of closed sets in a Hilbert space. Graduate students, scientists, engineers and researchers in pure and applied mathematical sciences, operations research, engineering, and cyber security will find the interdisciplinary scientific perspectives useful to their overall understanding and further research.
Topics covered include Operations Research, Games and Control Theory, Computational Number Theory and Information Security, Scientific Computing and Applications, Statistical Modeling and Applications, Systems of Monitoring and Spatial Analysis.
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics.
This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus.
The contributions in this book focus an approach to facility location theory through game theoretical tools highlighting situations where a location decision is faced by several decision makers and leading to a game theoretical framework in non-cooperative and cooperative methods.
Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions.
This book both analyzes and synthesizes new cutting-edge theories and methods for future design implementations in smart cities through interdisciplinary synergizing of architecture, technology, and the Internet of Things (IoT). Implementation of IoT enables the collection and data exchange of objects embedded with electronics, software, sensors, and network connectivity. Recently IoT practices have moved into uniquely identifiable objects that are able to transfer data directly into networks. This book features new technologically advanced ideas, highlighting properties of smart future city networks.Chapter contributors include theorists, computer scientists, mathematicians, and interdisciplinary planners, who currently work on identifying theories, essential elements, and practices where the IoT can impact the formation of smart cities and sustainability via optimization, network analyses, data mining, mathematical modeling and engineering. Moreover, this book includes research-based theories and real world practices aimed toward graduate researchers, experts, practitioners and the general public interested in architecture, engineering, mathematical modeling, industrial design, computer science technologies, and related fields.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.