Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear differential equations, Lyapunov stability, dynamical systems and the Poincaré¿Bendixson theorem, and bifurcation theory, and second-order topics including oscillation theory, boundary value problems, and Sturm¿Liouville problems. The presentation is clear and easy-to-understand, with figures and copious examples illustrating the meaning of and motivation behind definitions, hypotheses, and general theorems. A thoughtfully conceived selection of exercises together with answers and hints reinforce the reader's understanding of the material. Prerequisites are limited to advanced calculus and the elementary theory of differential equations and linear algebra, making the text suitable for seniorundergraduates as well.
This textbook covers the general theory of Lie groups. By first considering the case of linear groups (following von Neumann''s method) before proceeding to the general case, the reader is naturally introduced to Lie theory.Written by a master of the subject and influential member of the Bourbaki group, the French edition of this textbook has been used by several generations of students. This translation preserves the distinctive style and lively exposition of the original. Requiring only basics of topology and algebra, this book offers an engaging introduction to Lie groups for graduate students and a valuable resource for researchers.
This text covers a variety of topics in representation theory and is intended for graduate students and more advanced researchers who are interested in the field. The text includes in particular infinite-dimensional unitary representations for abelian groups, Heisenberg groups and SL(2), and representation theory of finite-dimensional algebras.
Proofs of theorems such as the Uniform Boundedness Theorem, the Open Mapping Theorem, and the Closed Graph Theorem are worked through step-by-step, providing an accessible avenue to understanding these important results.
Written by an expert on the topic and experienced lecturer, this textbook provides an elegant, self-contained introduction to functional analysis, including several advanced topics and applications to harmonic analysis.Starting from basic topics before proceeding to more advanced material, the book covers measure and integration theory, classical Banach and Hilbert space theory, spectral theory for bounded operators, fixed point theory, Schauder bases, the Riesz-Thorin interpolation theorem for operators, as well as topics in duality and convexity theory.Aimed at advanced undergraduate and graduate students, this book is suitable for both introductory and more advanced courses in functional analysis. Including over 1500 exercises of varying difficulty and various motivational and historical remarks, the book can be used for self-study and alongside lecture courses.
Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications.
This book gives a systematic introduction to the basic theory of financial mathematics, with an emphasis on applications of martingale methods in pricing and hedging of contingent claims, interest rate term structure models, and expected utility maximization problems.
This textbook on combinatorial commutative algebra focuses on properties of monomial ideals in polynomial rings and their connections with other areas of mathematics such as combinatorics, electrical engineering, topology, geometry, and homological algebra.
Starting from a basic level that is summarized at the start, the book proceeds to cover topics of current research interest, including open problems and conjectures.The central themes of the book are block theory and module theory of group representations, which are comprehensively surveyed with a full bibliography.
Several relevant classes of submanifolds are also discussed, including constant curvature submanifolds, submanifolds of nonpositive extrinsic curvature, conformally flat submanifolds and real Kaehler submanifolds.
This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting.
Poisson random variables, exponential random variables, and the introduction of Poisson processes are presented first, followed by the introduction of Poisson random measures in a simple case.
This introduction covers Markov Chains, Birth and Death processes, Brownian motion and Autoregressive models, using the Maple computer-algebra system to simplify both the underlying mathematics and the conceptual understanding of random processes.
This book is devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems.
This textbook covers a wide array of topics in analytic and multiplicative number theory, suitable for graduate level courses.Extensively revised and extended, this Advanced Edition takes a deeper dive into the subject, with the elementary topics of the previous edition making way for a fuller treatment of more advanced topics.
Part I Tools and Problems.- 1 Elements of functional analysis and distributions.- 2 Statements of the problems of Chapter 1.- 3 Functional spaces.- 4 Statements of the problems of Chapter 3.- 5 Microlocal analysis.- 6 Statements of the problems of Chapter 5.- 7 The classical equations.- 8 Statements of the problems of Chapter 7.- Part II Solutions of the Problems. A Classical results. Index.
This advanced textbook covers the central topics in game theory and provides a strong basis from which readers can go on to more advanced topics. New definitions and topics are motivated as thoroughly as possible. Coverage includes the idea of iterated Prisoner's Dilemma (super games) and challenging game-playing computer programs.
This softcover edition of a very popular work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds, Fourier, Laplace, and Legendre transforms, elliptic functions and distributions.
1 Basic Measure Theory.- 2 Independence.- 3 Generating Functions.- 4 The Integral.- 5 Moments and Laws of Large Numbers.- 6 Convergence Theorems.- 7 Lp-Spaces and the Radon-Nikodym Theorem.- 8 Conditional Expectations.- 9 Martingales.- 10 Optional Sampling Theorems.- 11 Martingale Convergence Theorems and Their Applications.- 12 Backwards Martingales and Exchangeability.- 13 Convergence of Measures.- 14 Probability Measures on Product Spaces.- 15 Characteristic Functions and the Central Limit Theorem.- 16 Infinitely Divisible Distributions.- 17 Markov Chains.- 18 Convergence of Markov Chains.- 19 Markov Chains and Electrical Networks.- 20 Ergodic Theory.- 21 Brownian Motion.- 22 Law of the Iterated Logarithm.- 23 Large Deviations.- 24 The Poisson Point Process.- 25 The It├┤ Integral.- 26 Stochastic Differential Equations.- References.- Notation Index.- Name Index.- Subject Index.
This graduate textbook offers an introduction to the spectral theory of ordinary differential equations, focusing on Sturm-Liouville equations.Sturm-Liouville theory has applications in partial differential equations and mathematical physics.
The topics introduced include arithmetic of rings, modules, especially principal ideal rings and the classification of modules over such rings, Galois theory, as well as an introduction to more advanced topics such as homological algebra, tensor products, and algebraic concepts involved in algebraic geometry.
This softcover edition of a very popular work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds, Fourier, Laplace, and Legendre transforms, elliptic functions and distributions.
Mahler measure, a height function for polynomials, is the central theme of this book. Many Mahler measure results are proved for restricted sets of polynomials, such as for totally real polynomials, and reciprocal polynomials of integer symmetric as well as symmetrizable matrices.
This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces.
From Math Reviews: This is Volume II of a two-volume introductory text in classical algebra. The text moves carefully with many details so that readers with some basic knowledge of algebra can read it without difficulty. The book can be recommended either as a textbook for some particular algebraic topic or as a reference book for consultations in a selected fundamental branch of algebra. The book contains a wealth of material. Amongst the topics covered in Volume II the reader can find: the theory of ordered fields (e.g., with reformulation of the fundamental theorem of algebra in terms of ordered fields, with Sylvester's theorem on the number of real roots), Nullstellen-theorems (e.g., with Artin's solution of Hilbert's 17th problem and Dubois' theorem), fundamentals of the theory of quadratic forms, of valuations, local fields and modules. The book also contains some lesser known or nontraditional results; for instance, Tsen's results on solubility of systems of polynomial equations with a sufficiently large number of indeterminates. These two volumes constitute a very good, readable and comprehensive survey of classical algebra and present a valuable contribution to the literature on this subject.
This is a textbook on Galois theory. Galois theory has a well-deserved re- tation as one of the most beautiful subjects in mathematics. I was seduced by its beauty into writing this book. I hope you will be seduced by its beauty in reading it. This book begins at the beginning. Indeed (and perhaps a little unusually for a mathematics text), it begins with an informal introductory chapter, Ch- ter 1. In this chapter we give a number of examples in Galois theory, even before our terms have been properly de?ned. (Needless to say, even though we proceed informally here, everything we say is absolutely correct.) These examples are sort of an airport beacon, shining a clear light at our destination as we navigate a course through the mathematical skies to get there. Then we start with our proper development of the subject, in Chapter 2. We assume no prior knowledge of ?eld theory on the part of the reader. We develop ?eld theory, with our goal being the Fundamental Theorem of Galois Theory (the FTGT). On the way, we consider extension ?elds, and deal with the notions of normal, separable, and Galois extensions. Then, in the penul- mate section of this chapter, we reach our main goal, the FTGT.
Number theory is a branch of mathematics which draws its vitality from a rich historical background. It is also traditionally nourished through interactions with other areas of research, such as algebra, algebraic geometry, topology, complex analysis and harmonic analysis. More recently, it has made a spectacular appearance in the field of theoretical computer science and in questions of communication, cryptography and error-correcting codes. Providing an elementary introduction to the central topics in number theory, this book spans multiple areas of research. The first part corresponds to an advanced undergraduate course. All of the statements given in this part are of course accompanied by their proofs, with perhaps the exception of some results appearing at the end of the chapters. A copious list of exercises, of varying difficulty, are also included here. The second part is of a higher level and is relevant for the first year of graduate school. It contains an introduction to elliptic curves and a chapter entitled "e;Developments and Open Problems"e;, which introduces and brings together various themes oriented toward ongoing mathematical research. Given the multifaceted nature of number theory, the primary aims of this book are to: - provide an overview of the various forms of mathematics useful for studying numbers - demonstrate the necessity of deep and classical themes such as Gauss sums - highlight the role that arithmetic plays in modern applied mathematics - include recent proofs such as the polynomial primality algorithm - approach subjects of contemporary research such as elliptic curves - illustrate the beauty of arithmetic The prerequisites for this text are undergraduate level algebra and a little topology of Rn. It will be of use to undergraduates, graduates and phd students, and may also appeal to professional mathematicians as a reference text.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.