Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Molten Salt Reactors and Thorium Energy, Second Edition is a fully updated comprehensive reference on the latest advances in MSR research and technology. Building on the successful first edition, Tom Dolan and the team of experts have fully updated the content to reflect the impressive advances from the last 5 years, ensuring this book continues to be the go-to reference on the topic. This new edition covers progress made in MSR design, details innovative experiments, and includes molten salt data, corrosion studies and deployment plans. The successful case studies section of the first edition have been removed, expanded, and fully updated, and are now published in a companion title called Global Case Studies on Molten Salt Reactors. Readers will gain a deep understanding of the advantages and challenges of MSR development and thorium fuel use, as well as step-by-step guidance on the latest in MSR reactor design. Each chapter provides a clear introduction, covers technical issues and includes examples and conclusions, while promoting the sustainability benefits throughout.
Part 1 introduces key RHC technologies and discusses RHC in the context of global heating and cooling demand. Part 2 then contains chapters focusing on particular RHC technologies. Part 3 reviews enabling technologies, such as thermal storage and district heating. Part 4 provides international RHC case studies.
Advances in Wind Turbine Blade Design and Materials, Second Edition, builds on the thorough review of the design and functionality of wind turbine rotor blades and the requirements and challenges for composite materials used in both current and future designs of wind turbine blades.
Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation presents the latest deterministic numerical methods for neutron transport equations (NTEs) with complex geometry, which are of great demand in recent years due to the rapid development of advanced nuclear reactor concepts and high-performance computational technologies. This book covers the wellknown methods proposed and used in recent years, not only theoretical modeling but also numerical results. This book provides readers with a very thorough understanding of unstructured neutron transport calculations and enables them to develop their own computational codes. The fundamentals, numerical discretization methods, algorithms, and numerical results are discussed. Researchers and engineers from utilities and research institutes are provided with examples on how to model an advanced nuclear reactor, which they can then apply to their own research projects and lab settings.
Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion presents a comprehensive analysis of thermal energy storage systems operating at beyond 800┬░C. Editor Dr. Alejandro Datas and his team of expert contributors from a variety of regions summarize the main technological options and the most relevant materials and characterization considerations to enable the reader to make the most effective and efficient decisions. This book helps the reader to solve the very specific challenges associated with working within an ultra-high temperature energy storage setting. It condenses and summarizes the latest knowledge, covering fundamentals, device design, materials selection and applications, as well as thermodynamic cycles and solid-state devices for ultra-high temperature energy conversion. This book provides a comprehensive and multidisciplinary guide to engineers and researchers in a variety of fields including energy conversion, storage, cogeneration, thermodynamics, numerical methods, CSP, and materials engineering. It firstly provides a review of fundamental concepts before exploring numerical methods for fluid-dynamics and phase change materials, before presenting more complex elements such as heat transfer fluids, thermal insulation, thermodynamic cycles, and a variety of energy conversation methods including thermophotovoltaic, thermionic, and combined heat and power. Reviews the main technologies enabling ultra-high temperature energy storage and conversion, including both thermodynamic cycles and solid-state devices Includes the applications for ultra-high temperature energy storage systems, both in terrestrial and space environments Analyzes the thermophysical properties and relevant experimental and theoretical methods for the analysis of high-temperature materials
Salinity Gradient Heat Engines classifies all the existing SGHEs and presents an in-depth analysis of their fundamentals, applications and perspectives. The main SGHEs analyzed in this publication are Osmotic, the Reverse Electrodialysis, and the Accumulator Mixing Heat Engines. The production and regeneration unit of both cycles are described and analyzed alongside the related economic and environmental aspects. This approach provides the reader with very thorough knowledge on how these technologies can be developed and implemented as a low-impact power generation technique, wherever low-temperature waste-heat is available. This book will also be a very beneficial resource for academic researchers and graduate students across various disciplines, including energy engineering, chemical engineering, chemistry, physics, electrical and mechanical engineering. Focuses on advanced, yet practical, recovery of waste heat via salinity gradient heat engines Outlines the existing salinity gradient heat engines and discusses fundamentals, potential and perspectives of each of them Includes economics and environmental aspects Provides an innovative reference for all industrial sectors involving processes where low-temperature waste-heat is available.
Advances in Thermal Energy Storage Systems, 2nd edition, presents a fully updated comprehensive analysis of thermal energy storage systems (TES) including all major advances and developments since the first edition published. This very successful publication provides readers with all the information related to TES in one resource, along with a variety of applications across the energy/power and construction sectors, as well as, new to this edition, the transport industry. After an introduction to TES systems, editor Dr. Prof. Luisa Cabeza and her team of expert authors consider the source, design and operation of the use of water, molten salts, concrete, aquifers, boreholes and a variety of phase-change materials for TES systems, before analyzing and simulating underground TES systems. This edition benefits from 5 new chapters covering the most advanced technologies including sorption systems, thermodynamic and dynamic modelling as well as applications to the transport industry and the environmental and economic aspects of TES. It will benefit researchers and academics of energy systems and thermal energy storage, construction engineering academics, engineers and practitioners in the energy and power industry, as well as architects of plants and storage systems and R&D managers. Includes 5 brand new chapters covering Sorption systems, Thermodynamic and dynamic models, applications to the transport sector, environmental aspects of TES and economic aspects of TESAll existing chapters are updated and revised to reflect the most recent advances in the research and technologies of the fieldReviews heat storage technologies, including the use of water, molten salts, concrete and boreholes in one comprehensive resource Describes latent heat storage systems and thermochemical heat storageIncludes information on the monitoring and control of thermal energy storage systems, and considers their applications in residential buildings, power plants and industry
Nuclear Reactor Technology Development and Utilization presents the theory and principles of the most common advanced nuclear reactor systems and provides a context for the value and utilization of nuclear power in a variety of applications both inside and outside a traditional nuclear setting. As countries across the globe realize their plans for a sustainable energy future, the need for innovative nuclear reactor design is increasing, and this book will provide a deep understanding of how these technologies can aid in a region''s goal for clean and reliable energy. Dr Khan and Dr Nakhabov, alongside their team of expert contributors, discuss a variety of important topics, including nuclear fuel cycles, plant decommissioning and hybrid energy systems, while considering a variety of diverse uses such as nuclear desalination, hydrogen generation and radioisotope production. Knowledge acquired enables the reader to conduct further research in academia and industry, and apply the latest design, development, integration, safety and economic guidance to their work and research. Combines reactor fundamentals with a contemporary look at evolving trends in the design of advanced reactors and their application to both nuclear and non-nuclear usesAnalyses the latest research and uses of hybrid systems which bring together nuclear technology with renewable energy technologiesPresents applications, economic factors and an analysis of sustainability factors in one comprehensive resource
Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts: New Technologies, Challenges and Opportunities highlights the novel applications of, and new methodologies for, the advancement of biological, biochemical, thermochemical and chemical conversion systems that are required for biofuels production. The book addresses the environmental impact of value added bio-products and agricultural modernization, along with the risk assessment of industrial scaling. The book also stresses the urgency in finding creative, efficient and sustainable solutions for environmentally conscious biofuels, while underlining pertinent technical, environmental, economic, regulatory and social issues. Users will find a basis for technology assessments, current research capability, progress, and advances, as well as the challenges associated with biofuels at an industrial scale, with insights towards forthcoming developments in the industry.
The Energy Internet: An Open Energy Platform to Transform Legacy Power Systems into Open Innovation and Global Economic Engines is an innovative concept that changes the way people generate, distribute and consume electrical energy. With the potential to transform the infrastructure of the electric grid, the book challenges existing power systems, presenting innovative and pioneering theories and technologies that will challenge existing norms on generation and consumption. Researchers, academics, engineers, consultants and policymakers will gain a thorough understanding of the Energy Internet that includes a thorough dissemination of case studies from the USA, China, Japan, Germany and the U.K. The book''s editors provide analysis of various enabling technologies and technical solutions, such as control theory, communication, and the social and economic aspects that are central to obtaining a clear appreciation of the potential of this complex infrastructure. Presents the first complete resource on the innovative concept of the Energy Internet Provides a clear analysis of the architecture of the Energy Internet to ensure an understanding of the technologies behind generating, distributing and consuming electricity in this wayIncludes a variety of global case studies of real-world implementation and pilot projects to thoroughly demonstrate the theoretical, technological and economic considerations
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.