Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Six leading experts lecture on a wide spectrum of recent results on the subject of the title. They present a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces, and recall the concept of amenability.
A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space.
The Baum-Connes conjecture is part of A Connes' non-commutative geometry programme. This book presents an introduction to the Baum-Connes conjecture. It starts by defining the objects in both sides of the conjecture, then the assembly map which connects them. It illustrates the main tool to attack the conjecture (Kasparov's theory).
The Baum-Connes conjecture predicts that the K-homology of the reduced C^*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^*-algebras.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.