Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book offers a modern approach to the theory of continuous-time stochastic processes and stochastic calculus. The content is treated rigorously, comprehensively, and independently. In the first part, the theory of Markov processes and martingales is introduced, with a focus on Brownian motion and the Poisson process. Subsequently, the theory of stochastic integration for continuous semimartingales was developed. A substantial portion is dedicated to stochastic differential equations, the main results of solvability and uniqueness in weak and strong sense, linear stochastic equations, and their relation to deterministic partial differential equations. Each chapter is accompanied by numerous examples. This text stems from over twenty years of teaching experience in stochastic processes and calculus within master's degrees in mathematics, quantitative finance, and postgraduate courses in mathematics for applications and mathematical finance at the University of Bologna. The book provides material for at least two semester-long courses in scientific studies (Mathematics, Physics, Engineering, Statistics, Economics, etc.) and aims to provide a solid background for those interested in the development of stochastic calculus theory and its applications. This text completes the journey started with the first volume of Probability Theory I - Random Variables and Distributions, through a selection of advanced classic topics in stochastic analysis.
This book provides a concise yet rigorous introduction to probability theory. Among the possible approaches to the subject, the most modern approach based on measure theory has been chosen: although it requires a higher degree of mathematical abstraction and sophistication, it is essential to provide the foundations for the study of more advanced topics such as stochastic processes, stochastic differential calculus and statistical inference. The text originated from the teaching experience in probability and applied mathematics courses within the mathematics degree program at the University of Bologna; it is suitable for second- or third-year students in mathematics, physics, or other natural sciences, assuming multidimensional differential and integral calculus as a prerequisite. The four chapters cover the following topics: measures and probability spaces; random variables; sequences of random variables and limit theorems; and expectation and conditional distribution. The text includes a collection of solved exercises.
Questo libro offre un approccio moderno alla teoria dei processi stocastici in tempo continuo e del calcolo differenziale stocastico. I contenuti vengono trattati in modo rigoroso, completo e autonomo. Nella prima parte, viene introdotta la teoria dei processi di Markov e delle martingale, con un approfondimento sul moto Browniano e il processo di Poisson. Di seguito, è sviluppata la teoria dell'integrazione stocastica per semi-martingale continue. Una parte sostanziosa è dedicata alle equazioni differenziali stocastiche, ai principali risultati di risolubilità e unicità in senso debole e forte, alle equazioni stocastiche lineari e alla relazione con le equazioni differenziali alle derivate parziali deterministiche. Ogni capitolo è corredato di numerosi esempi. Questo testo nasce dall'esperienza più che ventennale di insegnamento in corsi su processi e calcolo stocastico presso le lauree magistrali in Matematica, in Quantitative finance e i corsi post-laurea in Matematica per le applicazioni e in Finanza matematica dell'Università di Bologna. Il libro raccoglie materiale per almeno due insegnamenti semestrali in corsi di studio scientifici (Matematica, Fisica, Ingegneria, Statistica, Economia...) e intende fornire un solido background a coloro che sono interessati allo sviluppo della teoria e delle applicazioni del calcolo stocastico. Questo testo completa il percorso iniziato col primo volume di Teoria della Probabilità - Variabili aleatorie e distribuzioni, attraverso una selezione di temi classici avanzati di analisi stocastica.
This detailed book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. It includes a full treatment of arbitrage theory in discrete and continuous time.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.