Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book provides an introduction to information theory, focussing on Shannon¿s three foundational theorems of 1948¿1949. Shannon¿s first two theorems, based on the notion of entropy in probability theory, specify the extent to which a message can be compressed for fast transmission and how to erase errors associated with poor transmission. The third theorem, using Fourier theory, ensures that a signal can be reconstructed from a sufficiently fine sampling of it. These three theorems constitute the roadmap of the book. The first chapter studies the entropy of a discrete random variable and related notions. The second chapter, on compression and error correcting, introduces the concept of coding, proves the existence of optimal codes and good codes (Shannon's first theorem), and shows how information can be transmitted in the presence of noise (Shannon's second theorem). The third chapter proves the sampling theorem (Shannon's third theorem) and looks at its connections with other results, such as the Poisson summation formula. Finally, there is a discussion of the uncertainty principle in information theory.Featuring a good supply of exercises (with solutions), and an introductory chapter covering the prerequisites, this text stems out lectures given to mathematics/computer science students at the beginning graduate level.
The topics introduced include arithmetic of rings, modules, especially principal ideal rings and the classification of modules over such rings, Galois theory, as well as an introduction to more advanced topics such as homological algebra, tensor products, and algebraic concepts involved in algebraic geometry.
This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration.
This book has a nonstandard choice of topics, including material on differential galois groups and proofs of the transcendence of e and pi. The author uses a conversational tone and has included a selection of stamps to accompany the text.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.