Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera- tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "e;noisy"e;. We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre- sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve th,~se SPDEs explicitly, or at least provide algorithms or approximations for the solutions.
Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications.
The first edition of Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach, gave a comprehensive introduction to SPDEs. In this, the second edition, the authors build on the theory of SPDEs driven by space-time Brownian motion, or more generally, space-time Levy process noise.
This book is an introduction to Malliavin calculus as a generalization of the classical non-anticipating Ito calculus to an anticipating setting. It presents the development of the theory and its use in new fields of application.
Here is a rigorous introduction to solution methods of stochastic control problems for jump diffusions. The 2nd edition adds a chapter on optimal control of stochastic partial differential equations driven by Levy processes, and a section on optimal stopping with delayed information.
The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.