Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Polymers used in electronics and electrical engineering are essential to the development of high-tech products, with applications in space, aviation, health, automotive, communication, robotics, consumer products, and beyond. Typical features of mainstream polymers such as mechanical performance, optical behavior, and environmental stability frequently need to be enhanced to perform in these demanding applications, creating the need to develop special grades or use completely new chemistry for their synthesis. Similarly, the typical set of properties included in the description of mainstream polymers are not sufficient for polymer selection for these applications, as they require different data, data that is meticulously detailed in the Handbook of Polymers for Electronics. The book provides readers with the most up-to-date information from the existing literature, manufacturing data, and patent filings. Presenting data for all polymers based on a consistent pattern of arrangement, the book provides details organized into the following sections: General; history; synthesis; structure; commercial polymers; physical properties; electrical properties; mechanical properties; chemical resistance; flammability; weather stability; thermal stability; biodegradation; toxicity; environmental impact; processing; blends; analysis. The contents, scope, treatment and novelty of the data makes this book an essential resource for anyone working with polymeric materials used in modern electronic applications.
Contains information on over 300 important additives for polymers - additives which are used to minimize adhesion, aid separation and enhance processing and end-applications for polymers. This title includes a large amount of data, from state, odor, and color to autoignition temperature and probability of biodegradation.
Chain Mobility and Progress in Medicine, Pharmaceuticals, and Polymer Science and Technology covers the core fundamentals and applications of chain movement, chain mobility, segmental mobility, segmental dynamics, and chain orientation in polymer science, medicine, pharmaceuticals, and other disciplines. The book starts by defining principal terms, then looks at the work of Pierre-Gilles de Gennes and his 1991 Nobel Prize in Physics for his work on polymer-chain motion. From there the book discusses the different mechanisms of chain motion of macromolecular substances, the conditions under which chains move, and the effects of these movements on properties of materials, such as chain alignment, chain orientation, creation of free volume, dimensional stability, and more. The final chapters provide insight on analytical methods of chain movement, chain movement phenomena in different polymers, and various fields of application. All concepts, findings, and applications are discussed in easy-to-understand language stripped of disciplinary slang, making the book accessible to researchers and practitioners across a variety of scientific fields.
Functional Fillers: Chemical Composition, Morphology, Performance, Applications demonstrates the applications of fillers, their chemical composition or modification, and morphological features. The book includes two sections, with the first part covering classic fillers, analyzing the current modifications in relation to composition and morphology, and enabling enhancements in properties and applications. The second part presents the new generation of fillers, which are providing designers with exceptional properties not previously available with classic fillers used in industry. This book supports engineers, researchers and technicians working with fillers, and will be of great interest to professionals working across the chemical, pharmaceutical, medicinal and electronics industries.
Databook of Plasticizers, Second Edition, contains data on the most important plasticizers in use today, including over 375 generic and commercial plasticizers. The data comes from a range of sources beyond plasticizers' manufacturers, allowing for a detailed comparison of properties between different plasticizers. Over 100 different data fields are provided, from general information, such as molecular structure and formula, to physical properties, health and safety information, ecological properties, and recommendations regarding appropriate use and performance of each plasticizer. The databook is an essential resource for engineers, technicians, and materials scientists responsible for specifying a plasticizer. It provides trustworthy and up-to-date data that is applicable to a range of numerous application areas, such as construction, automotives, food packaging, and more.
Self-Healing Materials: Principles and Technology is a practical book aimed at giving engineers and researchers in both industry and academia the information they need to deploy self-healing technology in a wide range of potential applications¿from adhesives to the automotive industry, and from electronics to biomedical implants. Developments are increasingly seeing real-world application, and this book enables practitioners to use this technology in their own work. The book first discusses the principal mechanisms of self-healing and how these are applied to the development of materials which have the ability to repair themselves¿either with minimal human intervention or without human intervention at all. The book provides a theoretical background and a review of the major research undertaken to date, to give a thorough grounding in this concept and related technology. The book specifically covers fault detection mechanisms in materials, and experimental methods to enable engineers to assess the efficiency of the self-healing process. It then discusses typical aids and additives in self-healing materials, including plasticizers, catalysts, shape-memory components, and more. Finally, the book contains real world examples of self-healing materials and how these have been applied to around 40 groups of products and industries, including materials used in the automotive industry, construction, composite materials for aerospace, biomaterials and materials used in medical devices, and adhesives and sealants.
Provides comprehensive information on material weathering for over forty families of polymers. This book presents discussions on formulating mechanisms of degradation, effect of thermal processes, present characteristic changes in properties, and tables of available numerical data.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.