Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book includes six chapters covering new vortex theories, vortex identification methods, and vortex simulation and applications. Vortices are ubiquitous in the universe and include tornados, hurricanes, airplane tip vortices, polar vortices, and even star vortices in the galaxy. Vortices are also building blocks, muscles, and sinews of turbulent flows. This book is useful for researchers in hydrodynamics, aerodynamics, thermodynamics, oceanography, meteorology, metallurgy, civil engineering, astronomy, biology, and more. It is also useful for research on the generation, sustenance, modeling, and controlling of turbulence.
The knowledge of quantitative turbulence mechanics relies heavily upon the definition of the concept of a vortex in mathematical terms. This reference work introduces the reader to Liutex, which is an accepted, accurate and mathematical definition of a vortex. The core of this book is a compilation of several papers on the subject. presented in the 13th World Congress of Computational Mechanics (WCCM2018), Symposium 704, Mathematics and Computations for Multiscale Structures of Turbulent and Other Complex Flows, New York, United States on July 27, 2018. This compilation also includes other research papers which explain the work done on the vortex definition, vortex identification and turbulence structure from different insight angles including mathematics, computational physics and experiments. The thirteen chapters in this volume will be informative to scientists and engineers who are interested in advanced theories about fluid dynamics, vortex science and turbulence research.
This book contains five chapters detailing significant advances in and applications of new turbulence theory and fluid dynamics modeling with a focus on wave propagation from arbitrary depths to shallow waters, computational modeling for predicting optical distortions through hypersonic flow fields, wind strokes over highway bridges, optimal crop production in a greenhouse, and technological appliance and performance concerns in wheelchair racing. We hope this book to be a useful resource to scientists and engineers who are interested in the fundamentals and applications of fluid dynamics.
This book contains twelve chapters detailing significant advances and applications in fluid dynamics modeling with focus on biomedical, bioengineering, chemical, civil and environmental engineering, aeronautics, astronautics, and automotive. We hope this book can be a useful resource to scientists and engineers who are interested in fundamentals and applications of fluid dynamics.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.