Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This text presents a collection of mathematical exercises with the aim of guiding readers to study topics in statistical physics, equilibrium thermodynamics, information theory, and their various connections. It explores essential tools from linear algebra, elementary functional analysis, and probability theory in detail and demonstrates their applications in topics such as entropy, machine learning, error-correcting codes, and quantum channels. The theory of communication and signal theory are also in the background, and many exercises have been chosen from the theory of wavelets and machine learning. Exercises are selected from a number of different domains, both theoretical and more applied. Notes and other remarks provide motivation for the exercises, and hints and full solutions are given for many. For senior undergraduate and beginning graduate students majoring in mathematics, physics, or engineering, this text will serve as a valuable guide as theymove on to more advanced work.
1: Pontryagin Spaces and Operator Colligations.- 1.1 Reproducing kernel Pontryagin spaces.- 1.2 Operator colligations.- 1.3 Julia operators and contractions.- 1.4 Extension of densely defined linear relations.- 1.5 Complementation and reproducing kernels.- A. Complementation in the sense of de Branges.- B. Applications to reproducing kernel Pontryagin spaces.- 2: Schur Functions and their Canonical Realizations.- 2.1 Pontryagin spaces ?(S), ?($$ \widetilde{S} $$ ), and D(S).- 2.2 Canonical coisometric and isometric realizations.- 2.3 Canonical unitary realization.- 2.4 Unitary dilations of coisometric and isometric colligations.- 2.5 Classes SK(F, B).- A. Definition and basic properties.- B. Conformally invariant view.- C. Application to factorization of operator-valued functions.- D. A non-holomorphic kernel.- 3: The State Spaces.- 3.1 Invariance under difference quotients.- 3.2 Spaces ?(S).- 3.3 Spaces ?$$ \widetilde{S} $$.- 3.4 Spaces D(S).- 3.5 Examples and miscellaneous results.- A. Rational unitary functions.- B. Symmetry in the state spaces.- C. Some consequences of Leech's theorem.- D. The scalar case: S(z)? ?(S) if and only if $$ \widetilde{S} $$(z) ? ?($$ \widetilde{S} $$).- 4: Structural Properties.- 4.1 Factorization and invariant subspaces.- A. Inclusion of spaces ?(S).- B. Inclusion of spaces D (S).- 4.2 Kre?n-Langer factorization.- A. Existence and properties.- B. Strongly regular representations.- 4.3 The Potapov-Ginzburg transform.- 4.4 Applications to the realization theory.- A. Kre?n space inner and outer spaces F andB.- B. Other base points.- C. Examples.- 4.5 Canonical models.- Epilogue: Open Questions and Directions for Further Work.- Appendix: Some Finite-Dimensional Spaces.- Notes.- References.- Notation Index.- Author Index
This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.
This book defines and examines the counterpart of Schur functions and Schur analysis in the slice hyperholomorphic setting. It is organized into three parts: the first introduces readers to classical Schur analysis, while the second offers background material on quaternions, slice hyperholomorphic functions, and quaternionic functional analysis.
It provides examples of important Hilbert spaces of analytic functions (in particular the Hardy space and the Fock space), and also includes a section reviewing essential aspects of topology, functional analysis and Lebesgue integration.Benefits of the 2nd editionRational functions are now covered in a separate chapter.
This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space.
This book provides the foundations for a rigorous theory of functional analysis with bicomplex scalars.
Generalized Schur functions are scalar- or operator-valued holomorphic functions such that certain associated kernels have a finite number of negative squares.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.