Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Der Integralbegriff in seiner Ausprägung durch Henri Lebesgue ist ein grundlegendes Werkzeug in der modernen Analysis, Numerik und Stochastik. Für Lehrveranstaltungen zu diesen Gebieten der Mathematik bereiten die Autoren wesentliche Sachverhalte in kompakter Weise auf. Das Buch liefert Orientierung und Material für verschiedene Varianten zwei- oder vierstündiger Lehrveranstaltungen. In einem ergänzenden Abschnitt werden um den Begriff der Konvexität herum Verbünde zur Funktionalanalysis hergestellt.
Dieses Lehrbuch beschäftigt sich mit stochastischen Prozessen in der Zeit. Diese Klasse von mathematischen Modellen hat vielfältige Anwendungen auf Problemstellungen, in denen man Zufallsphänomene in ihrer zeitlichen Entwicklung erfassen möchte. Im umfangreichen Gebiet der stochastischen Prozesse konzentrieren wir uns auf Themen, die sowohl mathematisch als auch von den Anwendungen her besonders bedeutungsvoll sind. Ausgangspunkt ist die Theorie der bedingten Erwartungen und der Martingale, die die Stochastik in der zweiten Hälfte des 20. Jahrhunderts neu prägte; hier orientiert man sich an der Vorstellung eines fairen Spiels. Demgegenüber beschreiben Markovketten zufällige Entwicklungen, bei denen die Verteilung des zukünftigen Verlaufs nur vom gegenwärtigen Zustand abhängt. Bei den zeitkontinuierlichen Prozessen steht die Brownsche Bewegung an erster Stelle. Zusammen mit den Poissonschen Punktprozessen und Lévyprozessen befindet sie sich an der Schnittstelle zwischen Martingalen und Markovprozessen. Ein abschließendes Kapitel beschäftigt sich mit zeitkontinuierlichen Markovprozessen und ihren Generatoren, bis hin zu Fellerprozessen.Das Buch versteht sich als einführender Text, der an fortgeschrittene Themen wie etwa die stochastische Analysis heranführt. Grundlegende Sätze aus der Maß- und Integrationstheorie werden benutzt, dabei stehen immer die probabilistischen Aspekte im Vordergrund. Damit ist das Buch für das fortgeschrittene Bachelor- oder das einführende Masterstudium der Mathematik geeignet.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.