Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The adaptive configuration of nodes in a sensor network has the potential to improve sequential estimation performance by intelligently allocating limited sensor network resources. In addition, the use of heterogeneous sensing nodes provides a diversity of information that also enhances estimation performance. This work reviews cognitive systems and presents a cognitive fusion framework for sequential state estimation using adaptive configuration of heterogeneous sensing nodes and heterogeneous data fusion. This work also provides an application of cognitive fusion to the sequential estimation problem of target tracking using foveal and radar sensors.
Recent innovations in modern radar for designing transmitted waveforms, coupled with new algorithms for adaptively selecting the waveform parameters at each time step, have resulted in improvements in tracking performance. Of particular interest are waveforms that can be mathematically designed to have reduced ambiguity function sidelobes, as their use can lead to an increase in the target state estimation accuracy. Moreover, adaptively positioning the sidelobes can reveal weak target returns by reducing interference from stronger targets. The manuscript provides an overview of recent advances in the design of multicarrier phase-coded waveforms based on Bjorck constant-amplitude zero-autocorrelation (CAZAC) sequences for use in an adaptive waveform selection scheme for mutliple target tracking. The adaptive waveform design is formulated using sequential Monte Carlo techniques that need to be matched to the high resolution measurements. The work will be of interest to both practitioners and researchers in radar as well as to researchers in other applications where high resolution measurements can have significant benefits. Table of Contents: Introduction / Radar Waveform Design / Target Tracking with a Particle Filter / Single Target tracking with LFM and CAZAC Sequences / Multiple Target Tracking / Conclusions
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.