Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book is an outgrowth of courses given by me for graduate students at York University in the past ten years. The actual writing of the book in this form was carried out at York University, Peking University, the Academia Sinica in Beijing, the University of California at Irvine, Osaka University, and the University of Delaware. The idea of writing this book was ?rst conceived in the summer of 1989, and the protracted period of gestation was due to my daily duties as a professor at York University. I would like to thank Professor K. C. Chang, of Peking University; Professor Shujie Li, of the Academia Sinica in Beijing; Professor Martin Schechter, of the University of California at Irvine; Professor Michihiro Nagase, of Osaka University; and Professor M. Z. Nashed, of the University of Delaware, for providing me with stimulating environments for the exchange of ideas and the actual writing of the book. We study in this book the properties of pseudo-differential operators arising in quantum mechanics, ?rst envisaged in [33] by Hermann Weyl, as bounded linear 2 n operators on L (R ). Thus, it is natural to call the operators treated in this book Weyl transforms.
The ISAAC Group in Pseudo-Differential Operators (IGPDO) met at the Fifth ISAAC Congress held at Universita di Catania in Italy in July, 2005. This volume consists of papers based on lectures given at the special session on pseudodifferential operators and invited papers that bear on the themes of IGPDO. Nineteen peer-reviewed papers represent modern trends in pseudo-differential operators. Diverse topics related to pseudo-differential operators are covered.
This textbook presents basic notions and techniques of Fourier analysis in discrete settings. Written in a concise style, it is interlaced with remarks, discussions and motivations from signal analysis. The first part is dedicated to topics related to the Fourier transform, including discrete time-frequency analysis and discrete wavelet analysis. Basic knowledge of linear algebra and calculus is the only prerequisite. The second part is built on Hilbert spaces and Fourier series and culminates in a section on pseudo-differential operators, providing a lucid introduction to this advanced topic in analysis. Some measure theory language is used, although most of this part is accessible to students familiar with an undergraduate course in real analysis. Discrete Fourier Analysis is aimed at advanced undergraduate and graduate students in mathematics and applied mathematics. Enhanced with exercises, it will be an excellent resource for the classroom as well as for self-study.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.