Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
New data acquisition techniques are emerging and are providing fast and efficient means for multidimensional spatial data collection. Airborne LIDAR surveys, SAR satellites, stereo-photogrammetry and mobile mapping systems are increasingly used for the digital reconstruction of the environment. All these systems provide extremely high volumes of raw data, often enriched with other sensor data (e.g., beam intensity). Improving methods to process and visually analyze this massive amount of geospatial and user-generated data is crucial to increase the efficiency of organizations and to better manage societal challenges. Within this context, this book proposes an up-to-date view of computational methods and tools for spatio-temporal data fusion, multivariate surface generation, and feature extraction, along with their main applications for surface approximation and rainfall analysis. The book is intended to attract interest from different fields, such as computer vision, computer graphics, geomatics, and remote sensing, working on the common goal of processing 3D data. To this end, it presents and compares methods that process and analyze the massive amount of geospatial data in order to support better management of societal challenges through more timely and better decision making, independent of a specific data modeling paradigm (e.g., 2D vector data, regular grids or 3D point clouds). We also show how current research is developing from the traditional layered approach, adopted by most GIS softwares, to intelligent methods for integrating existing data sets that might contain important information on a geographical area and environmental phenomenon. These services combine traditional map-oriented visualization with fully 3D visual decision support methods and exploit semantics-oriented information (e.g., a-priori knowledge, annotations, segmentations) when processing, merging, and integrating big pre-existing data sets.
This book is a guide for researchers and practitioners to the new frontiers of 3D shape analysis and the complex mathematical tools most methods rely on. The target reader includes students, researchers and professionals with an undergraduate mathematics background, who wish to understand the mathematics behind shape analysis. The authors begin with a quick review of basic concepts in geometry, topology, differential geometry, and proceed to advanced notions of algebraic topology, always keeping an eye on the application of the theory, through examples of shape analysis methods such as 3D segmentation, correspondence, and retrieval. A number of research solutions in the field come from advances in pure and applied mathematics, as well as from the re-reading of classical theories and their adaptation to the discrete setting. In a world where disciplines (fortunately) have blurred boundaries, the authors believe that this guide will help to bridge the distance between theory and practice. Table of Contents: Acknowledgments / Figure Credits / About this Book / 3D Shape Analysis in a Nutshell / Geometry, Topology, and Shape Representation / Differential Geometry and Shape Analysis / Spectral Methods for Shape Analysis / Maps and Distances between Spaces / Algebraic Topology and Topology Invariants / Differential Topology and Shape Analysis / Reeb Graphs / Morse and Morse-Smale Complexes / Topological Persistence / Beyond Geometry and Topology / Resources / Bibliography / Authors' Biographies
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.