Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The goal of this book is to investigate the behavior of weak solutions to the elliptic interface problem in a neighborhood of boundary singularities: angular and conic points or edges. This problem is considered both for linear and quasi-linear equations, which are among the less studied varieties. As a second edition of Transmission Problems for Elliptic Second-Order Equations for Non-Smooth Domains (Birkhäuser, 2010), this volume includes two entirely new chapters: one about the oblique derivative problems for the perturbed p(x)-Laplacian equation in a bounded n-dimensional cone, and another about the existence of bounded weak solutions.Researchers and advanced graduate students will appreciate this compact compilation of new material in the field.
The aim of our book is the investigation of the behavior of strong and weak solutions to the regular oblique derivative problems for second order elliptic equations, linear and quasi-linear, in the neighborhood of the boundary singularities. The main goal is to establish the precise exponent of the solution decrease rate and under the best possible conditions. The question on the behavior of solutions of elliptic boundary value problems near boundary singularities is of great importance for its many applications, e.g., in hydrodynamics, aerodynamics, fracture mechanics, in the geodesy etc. Only few works are devoted to the regular oblique derivative problems for second order elliptic equations in non-smooth domains. All results are given with complete proofs. The monograph will be of interest to graduate students and specialists in elliptic boundary value problems and their applications.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.