Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Dieses Buch ist eine einzigartige Verflechtung von Theorie, Beispielen und Verfahren, die für verantwortungsvolles maschinelles Lernen relevant sind. Sie finden Intuitionen und Beispiele für Interpretable Machine Learning (IML) und eXplainable Artificial Intelligence (XAI). Die Beschreibungen werden durch Codeschnipsel mit Beispielen für R unter Verwendung der Pakete randomForest, mlr3 und DALEX ergänzt. Abschließend wird der Prozess anhand eines Comics gezeigt, der die Abenteuer von zwei Figuren, Beta und Bit, beschreibt. Die Interaktion dieser beiden zeigt die Entscheidungen, vor denen Analysten oft stehen, ob sie ein anderes Modell ausprobieren, eine andere Technik zur Erkundung ausprobieren oder nach anderen Daten suchen sollen - Fragen wie die, wie man Modelle vergleicht oder sie validiert.Alle Beispiele sind vollständig reproduzierbar, so dass man alle Erlebnisse auf einem lokalen Desktop nachspielen kann.Modellentwicklung ist eine verantwortungsvolle und anspruchsvolle Aufgabe, aber auch ein spannendes Abenteuer. Manchmal konzentrieren sich Lehrbücher nur auf die technische Seite und verlieren dabei den ganzen Spaß. Hier werden wir alles haben.
Thôi ¿¿¿c, t¿t c¿ các model d¿ ¿oán (predictive models) ¿¿u trông có v¿ ¿n, nh¿ng làm cách nào chúng ta có th¿ xây d¿ng các model m¿t cách ¿áng tin c¿y h¿n? ¿ây chính là câu h¿i tôi th¿¿ng ¿¿¿c h¿i b¿i các nhà khoa h¿c d¿ li¿u ¿ nh¿ng m¿c ¿¿ kinh nghi¿m khác nhau. Câu h¿i có v¿ ¿¿n gi¿n, nh¿ng ¿¿ng th¿i c¿ng r¿t thách th¿c b¿i vì có r¿t nhi¿u lüng quan ¿i¿m và m¿i quan tâm khác nhau t¿ nh¿ng ng¿¿i liên quan.Nh¿ng ng¿¿i xây d¿ng model th¿¿ng t¿p trung vào vi¿c hün luy¿n model (training model) m¿t cách t¿ ¿¿ng, ki¿m soát hi¿u n¿ng, debug và nh¿ng höt ¿¿ng duy trì c¿ h¿ th¿ng t¿ d¿ li¿u ¿¿n t¿i ¿u hi¿u n¿ng ph¿n c¿ng và c¿i ti¿n model (MLOps). Ng¿¿i s¿ d¿ng model ph¿n nhi¿u th¿¿ng h¿ng thú h¿n v¿i nh¿ng câu h¿i v¿ t¿ ¿âu mà model cho ra k¿t qü d¿ ¿oán nh¿ v¿y (explainability) höc nh¿ng ¿òi h¿i nh¿t ¿¿nh ¿¿ hi¿u ¿¿¿c bên trong model höt ¿¿ng nh¿ th¿ nào (transparency) và m¿c ¿¿ "phòng th¿" (security) c¿a mô hình tr¿¿c nh¿ng t¿n công, ví d¿ nh¿ t¿ d¿ li¿u kém ch¿t l¿¿ng. V¿ phía xã h¿i, nh¿ng m¿i quan tâm th¿¿ng là model có công b¿ng hay thiên v¿ (fairness hay bias), ví d¿ mô hình có ¿u tiên cho m¿t nhóm ng¿¿i nh¿ trong xã h¿i, höc thiên v¿ v¿ gi¿i tính không; hay k¿t qü d¿ ¿oán t¿ model có phù h¿p chün m¿c ¿¿o ¿¿c hay không (ethics).Quy¿n sách này t¿ng hòa t¿t c¿ các góc nhìn trên. B¿n ¿¿c s¿ tìm th¿y nh¿ng k¿ thüt machine learning ch¿n l¿c và c¿ nh¿ng cách hi¿u tr¿c quan ng¿n g¿n. Các k¿ thüt ¿¿u ¿¿¿c g¿n li¿n v¿i các ¿ön code trong ngôn ng¿ R. B¿n ¿¿c s¿ cùng hai nhân v¿t Bêta và Bít ¿i d¿o vào khu v¿¿n, không ph¿i c¿a kì hoa d¿ th¿o, mà là c¿a các model ML thú v¿. Trong khu v¿¿n có ng¿n ¿èn ¿¿¿c th¿p lên b¿i nh¿ng góc nhìn th¿u ¿áo v¿ model t¿ kinh nghi¿m th¿c t¿.Cüc bàn lün gi¿a Bêta và Bít c¿ng chính là nh¿ng gì di¿n ra trong th¿c t¿ mà các nhà khoa h¿c d¿ li¿u th¿¿ng g¿p, có nên th¿ m¿t model khác không, höc có nên th¿ m¿t k¿ thüt khác ¿¿ khai phá d¿ li¿u, höc m¿t t¿p d¿ li¿u khác ch¿ng? --- và ti t¿ câu h¿i nh¿: làm cách nào ¿¿ so sánh gi¿a nh¿ng model höc làm th¿ nào ¿¿ ki¿m tra hi¿u n¿ng.Quá trình phát tri¿n model ¿òi h¿i s¿ c¿n th¿n và trách nhi¿m, nh¿ng r¿t thú v¿. Thông th¿¿ng, nhi¿u quy¿n sách ch¿ chú tâm vào m¿t ki¿n th¿c mà quên m¿t ¿i ni¿m vui và s¿ thú v¿. Nh¿ng, hi v¿ng ¿ quy¿n sách này, chúng ta s¿ có ¿¿¿c c¿ hai.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.