Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This compact textbook consists of lecture notes given as a fourth-year undergraduate course of the mathematics degree at the Universitat Politècnica de Catalunya, including topics in enumerative combinatorics, finite geometry, and graph theory. This text covers a single-semester course and is aimed at advanced undergraduates and masters-level students. Each chapter is intended to be covered in 6-8 hours of classes, which includes time to solve the exercises. The text is also ideally suited for independent study. Some hints are given to help solve the exercises and if the exercise has a numerical solution, then this is given. The material covered allows the reader with a rudimentary knowledge of discrete mathematics to acquire an advanced level on all aspects of combinatorics, from enumeration, through finite geometries to graph theory. The intended audience of this book assumes a mathematical background of third-year students in mathematics, allowing for a swifter useof mathematical tools in analysis, algebra, and other topics, as these tools are routinely incorporated in contemporary combinatorics. Some chapters take on more modern approaches such as Chapters 1, 2, and 9. The authors have also taken particular care in looking for clear concise proofs of well-known results matching the mathematical maturity of the intended audience.
This textbook provides a rigorous mathematical perspective on error-correcting codes, starting with the basics and progressing through to the state-of-the-art. Algebraic, combinatorial, and geometric approaches to coding theory are adopted with the aim of highlighting how coding can have an important real-world impact. Because it carefully balances both theory and applications, this book will be an indispensable resource for readers seeking a timely treatment of error-correcting codes.Early chapters cover fundamental concepts, introducing Shannon¿s theorem, asymptotically good codes and linear codes. The book then goes on to cover other types of codes including chapters on cyclic codes, maximum distance separable codes, LDPC codes, p-adic codes, amongst others. Those undertaking independent study will appreciate the helpful exercises with selected solutions.A Course in Algebraic Error-Correcting Codes suits an interdisciplinary audience atthe Masters level, including students of mathematics, engineering, physics, and computer science. Advanced undergraduates will find this a useful resource as well. An understanding of linear algebra is assumed.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.