Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The suggestions for the experimental determination of 2D and 3D DSL and the importance of measurement of band gap in optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring photon induced physical properties) have also been discussed in this context.
The influence of crossed electric and quantizing magnetic fields on the ER of the different 2D HD quantized structures (quantum wells, inversion and accumulation layers, quantum well HD superlattices and nipi structures) under different physical conditions is discussed in detail.
This monograph solely presents the Fowler-Nordheim field emission (FNFE) from semiconductors and their nanostructures. The book covers a wide range of different technologically important electronic compounds, and contains 200 open research problems.
This book examines the effective electron mass in nanodevices, explaining changes in band structure of optoelectronic semiconductors, and offering insight into electronic behavior in doped semiconductors and nanostructures. Includes 200 problems and questions.
This monograph investigates photoemission from optoelectronic materials and their nanostructures. It contains open-ended research problems which form an integral part of the text and are useful for graduate courses as well as aspiring Ph.D.'s and researchers.
Focusing only on the Einstein relation in compound semiconductors and their nanostructures, this book deals with open research problems from carbon nanotubes to quantum wire superlattices with different band structures, and other field assisted systems.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.