Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Computation and Modeling for Fractional Order Systems provides readers with problem-solving techniques for obtaining exact and/or approximate solutions of governing equations arising in fractional dynamical systems presented using various analytical, semi-analytical, and numerical methods. Various analytical/semi-analytical/numerical methods are applied for solving real-life fractional order problems. The comprehensive descriptions of different recently developed fractional singular, non-singular, fractal-fractional, and discrete fractional operators, along with computationally efficient methods, are included for the reader to understand how these may be applied to real-world systems, and a wide variety of dynamical systems such as deterministic, stochastic, continuous, and discrete are addressed. Fractional calculus has gained increasing popularity and relevance over the last few decades, due to its well-established applications in various fields of science and engineering. It deals with the differential and integral operators with non-integral powers. Fractional differential equations are the pillar of various systems occurring in a wide range of science and engineering disciplines, namely physics, chemical engineering, mathematical biology, financial mathematics, structural mechanics, control theory, circuit analysis, and biomechanics, among others.
Uncertainty is an inseparable component of almost every measurement and occurrence when dealing with real-world problems. Finding solutions to real-life problems in an uncertain environment is a difficult and challenging task. As such, this book addresses the solution of uncertain static and dynamic problems based on affine arithmetic approaches. Affine arithmetic is one of the recent developments designed to handle such uncertainties in a different manner which may be useful for overcoming the dependency problem and may compute better enclosures of the solutions. Further, uncertain static and dynamic problems turn into interval and/or fuzzy linear/nonlinear systems of equations and eigenvalue problems, respectively. Accordingly, this book includes newly developed efficient methods to handle the said problems based on the affine and interval/fuzzy approach. Various illustrative examples concerning static and dynamic problems of structures have been investigated in order to show the reliability and efficacy of the developed approaches.
The subject of fractional calculus has gained considerable popularity and importance during the past three decades, mainly due to its validated applications in various fields of science and engineering. It is a generalization of ordinary differentiation and integration to arbitrary (non-integer) order. The fractional derivative has been used in various physical problems, such as frequency-dependent damping behavior of structures, biological systems, motion of a plate in a Newtonian fluid, ,,,,,,,,I ,,,,? controller for the control of dynamical systems, and so on. It is challenging to obtain the solution (both analytical and numerical) of related nonlinear partial differential equations of fractional order. So for the last few decades, a great deal of attention has been directed towards the solution for these kind of problems. Different methods have been developed by other researchers to analyze the above problems with respect to crisp (exact) parameters.However, in real-life applications such as for biological problems, it is not always possible to get exact values of the associated parameters due to errors in measurements/experiments, observations, and many other errors. Therefore, the associated parameters and variables may be considered uncertain. Here, the uncertainties are considered interval/fuzzy. Therefore, the development of appropriate efficient methods and their use in solving the mentioned uncertain problems are the recent challenge.In view of the above, this book is a new attempt to rigorously present a variety of fuzzy (and interval) time-fractional dynamical models with respect to different biological systems using computationally efficient method. The authors believe this book will be helpful to undergraduates, graduates, researchers, industry, faculties, and others throughout the globe.
In general, nanofluid is suspension of nanometer-sized particle in base fluids such as water, oil, ethylene glycol mixture etc. Nanofluid has more thermal conductivity compared to the base fluids. As such, the nanofluid has more heat transfer capacity than the base fluids. In order to study nanofluid flow problems, we need to solve related nonlinear differential equations analytically or numerically. But in most cases, we may not get an analytical solution. Accordingly, the related nonlinear differential equations need to be solved by efficient numerical methods.Accordingly, this book addresses various challenging problems related to nanofluid flow. In this regard, different efficient numerical methods such as homotopy perturbation method, Galerkin's method, and least square method are included. Further, the above practical problems are validated in special cases. We believe that this book will be very beneficial for readers who want firsthand knowledge on how to solve nanofluid flow problems.
Plates are integral parts of most engineering structures and their vibration analysis is required for safe design. Vibration of Plates provides a comprehensive, self-contained introduction to vibration theory and analysis of two-dimensional plates. Reflecting the author's more than 15 years of original research on plate vibration, this book present
This book discusses soft computing, which provides an efficient platform to deal with imprecision, uncertainty, vagueness and approximation in order to attain robustness and reliable computing. It explores two major concepts of soft computing: fuzzy set theory and neural networks, which relate to uncertainty handling and machine learning techniques respectively. Generally, fuzzy sets are considered as vague or uncertain sets having membership function lying between 0 and 1, and ANN is a type of artificial intelligence that attempts to imitate the way a human brain works by configuring specific applications, for instance pattern recognition or data classification, through learning processes.The book also presents C/MATLAB programming codes related to the basics of fuzzy set, interval arithmetic and ANN in a concise, practical and adaptable manner along, with simple examples and self-validation unsolved practice questions in few cases
Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi-Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi-analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi-Analytical Methods for Differential Equations is an excellent textbook for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.
This book will dealts with different sections associated with bending, buckling and vibration of nanobeams and nanoplates along with systematic description of handling the complexities when nanoscales are considered. The introduction includes basic ideas concerned with nanostructures, the algorithms and iterations followed in numerical methods and introduction to beam and plate theories in conjunction with nonlocal elasticity theory applied in nanostructures.Next, the investigation of nanobeams and nanoplates subjected to different sets of boundary conditions based on various nonlocal theories will be included. The varieties of physical and geometrical parameters that influence the bending, buckling and vibration mechanisms will be summarized.Finally, effect of environments such as thermal environment, Winkler-Pasternak elastic foundations and non-uniformity etc. on the buckling and vibration mechanisms will be illustrated.
Presents a systematic treatment of fuzzy fractional differential equations as well as newly developed computational methods to model uncertain physical problemsComplete with comprehensive results and solutions, Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications details newly developed methods of fuzzy computational techniquesneeded to model solve uncertainty. Fuzzy differential equations are solved via various analytical andnumerical methodologies, and this book presents their importance for problem solving, prototypeengineering design, and systems testing in uncertain environments.In recent years, modeling of differential equations for arbitrary and fractional order systems has been increasing in its applicability, and as such, the authors feature examples from a variety of disciplines to illustrate the practicality and importance of the methods within physics, applied mathematics, engineering, and chemistry, to name a few. The fundamentals of fractional differential equations and the basic preliminaries of fuzzy fractional differential equations are first introduced, followed by numerical solutions, comparisons of various methods, and simulated results. In addition, fuzzy ordinary, partial, linear, and nonlinear fractional differential equations are addressed to solve uncertainty in physical systems. In addition, this book features:* Basic preliminaries of fuzzy set theory, an introduction of fuzzy arbitrary order differential equations, and various analytical and numerical procedures for solving associated problems* Coverage on a variety of fuzzy fractional differential equations including structural, diffusion, and chemical problems as well as heat equations and biomathematical applications* Discussions on how to model physical problems in terms of nonprobabilistic methods and provides systematic coverage of fuzzy fractional differential equations and its applications* Uncertainties in systems and processes with a fuzzy conceptFuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications is an ideal resource for practitioners, researchers, and academicians in applied mathematics, physics, biology, engineering, computer science, and chemistry who need to model uncertain physical phenomena and problems. The book is appropriate for graduate-level courses on fractional differential equations for students majoring in applied mathematics, engineering, physics, and computer science.
Plates are integral parts of most engineering structures and their vibration analysis is required for safe design. Vibration of Plates provides a comprehensive, self-contained introduction to vibration theory and analysis of two-dimensional plates. Reflecting the author's more than 15 years of original research on plate vibration, this book present
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.