Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Corporate success has been changed by the importance of new developments in Business Analytics (BA) and furthermore by the support of computational intelligence- based techniques. This book opens a new avenues in these subjects, identifies key developments and opportunities. The book will be of interest for students, researchers and professionals to identify innovative ways delivered by Business Analytics based on computational intelligence solutions. They help elicit information, handle knowledge and support decision-making for more informed and reliable decisions even under high uncertainty environments.Computational Intelligence for Business Analytics has collected the latest technological innovations in the field of BA to improve business models related to Group Decision-Making, Forecasting, Risk Management, Knowledge Discovery, Data Breach Detection, Social Well-Being, among other key topics related to this field.
"e;If you torture the data long enough, Nature will confess,"e; said 1991 Nobel-winning economist Ronald Coase. The statement is still true. However, achieving this lofty goal is not easy. First, "e;long enough"e; may, in practice, be "e;too long"e; in many applications and thus unacceptable. Second, to get "e;confession"e; from large data sets one needs to use state-of-the-art "e;torturing"e; tools. Third, Nature is very stubborn - not yielding easily or unwilling to reveal its secrets at all. Fortunately, while being aware of the above facts, the reader (a data miner) will find several efficient data mining tools described in this excellent book. The book discusses various issues connecting the whole spectrum of approaches, methods, techniques and algorithms falling under the umbrella of data mining. It starts with data understanding and preprocessing, then goes through a set of methods for supervised and unsupervised learning, and concludes with model assessment, data security and privacy issues. It is this specific approach of using the knowledge discovery process that makes this book a rare one indeed, and thus an indispensable addition to many other books on data mining. To be more precise, this is a book on knowledge discovery from data. As for the data sets, the easy-to-make statement is that there is no part of modern human activity left untouched by both the need and the desire to collect data. The consequence of such a state of affairs is obvious.
Fuzzy Modelling: Paradigms and Practice provides an up-to-date and authoritative compendium of fuzzy models, identification algorithms and applications. Chapters in this book have been written by the leading scholars and researchers in their respective subject areas. Several of these chapters include both theoretical material and applications. The editor of this volume has organized and edited the chapters into a coherent and uniform framework. The objective of this book is to provide researchers and practitioners involved in the development of models for complex systems with an understanding of fuzzy modelling, and an appreciation of what makes these models unique. The chapters are organized into three major parts covering relational models, fuzzy neural networks and rule-based models. The material on relational models includes theory along with a large number of implemented case studies, including some on speech recognition, prediction, and ecological systems. The part on fuzzy neural networks covers some fundamentals, such as neurocomputing, fuzzy neurocomputing, etc., identifies the nature of the relationship that exists between fuzzy systems and neural networks, and includes extensive coverage of their architectures. The last part addresses the main design principles governing the development of rule-based models. Fuzzy Modelling: Paradigms and Practice provides a wealth of specific fuzzy modelling paradigms, algorithms and tools used in systems modelling. Also included is a panoply of case studies from various computer, engineering and science disciplines. This should be a primary reference work for researchers and practitioners developing models of complex systems.
Although the notion is a relatively recent one, the notions and principles of Granular Computing (GrC) have appeared in a different guise in many related fields including granularity in Artificial Intelligence, interval computing, cluster analysis, quotient space theory and many others. Recent years have witnessed a renewed and expanding interest in the topic as it begins to play a key role in bioinformatics, e-commerce, machine learning, security, data mining and wireless mobile computing when it comes to the issues of effectiveness, robustness and uncertainty. The Handbook of Granular Computing offers a comprehensive reference source for the granular computing community, edited by and with contributions from leading experts in the field. Includes chapters covering the foundations of granular computing, interval analysis and fuzzy set theory; hybrid methods and models of granular computing; and applications and case studies. Divided into 5 sections: Preliminaries, Fundamentals, Methodology and Algorithms, Development of Hybrid Models and Applications and Case Studies. Presents the flow of ideas in a systematic, well-organized manner, starting with the concepts and motivation and proceeding to detailed design that materializes in specific algorithms, applications and case studies. Provides the reader with a self-contained reference that includes all pre-requisite knowledge, augmented with step-by-step explanations of more advanced concepts. The Handbook of Granular Computing represents a significant and valuable contribution to the literature and will appeal to a broad audience including researchers, students and practitioners in the fields of Computational Intelligence, pattern recognition, fuzzy sets and neural networks, system modelling, operations research and bioinformatics.
Evolutionary design of intelligent systems is gaining much popularity due to its capabilities in handling several real world problems involving optimization, complexity, noisy and non-stationary environment, imprecision, uncertainty and vagueness. This edited volume 'Engineering Evolutionary Intelligent Systems' deals with the theoretical and methodological aspects, as well as various evolutionary algorithm applications to many real world problems originating from science, technology, business or commerce. This volume comprises of 15 chapters including an introductory chapter which covers the fundamental definitions and outlines some important research challenges. Chapters were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
This book comprises a selection of papers from IFSA 2007 on theoretical advances and applications of fuzzy logic and soft computing. These papers were selected from over 400 submissions and constitute an important contribution to the theory and applications of fuzzy logic and soft computing methodologies. Soft Computing c- sists of several computing paradigms, including fuzzy logic, neural networks, genetic algorithms, and other techniques, which can be used to produce powerful intelligent systems for solving real-world problems. The papers of IFSA 2007 also make a c- tribution to this goal. This book is intended to be a major reference for scientists and engineers interested in applying new fuzzy logic and soft computing tools to achieve intelligent solution to complex problems. We consider that this book can also be used to get novel ideas for new lines of research, or to continue the lines of research proposed by the authors of the papers contained in the book. The book is divided in to sixteen main parts. Each part contains a set of papers on a common subject, so that the reader can find similar papers grouped together. Some of these parts are comprised from the papers of organized sessions of IFSA 2007 and we thank the session's organizers for their incredible job on forming these sessions with invited and regular paper submissions.
We describe in this book, new methods for analysis and design of hybrid intelligent systems using soft computing techniques. Soft Computing (SC) consists of several computing paradigms, including fuzzy logic, neural networks, and genetic algorithms, which can be used to produce powerful hybrid intelligent systems for solving problems in pattern recognition, time series prediction, intelligent control, robotics and automation. Hybrid int- ligent systems that combine several SC techniques are needed due to the complexity and high dimensionality of real-world problems. Hybrid int- ligent systems can have different architectures, which have an impact on the efficiency and accuracy of these systems, for this reason it is very - portant to optimize architecture design. The architectures can combine, in different ways, neural networks, fuzzy logic and genetic algorithms, to achieve the ultimate goal of pattern recognition, time series prediction, - telligent control, or other application areas. This book is intended to be a major reference for scientists and en- neers interested in applying new computational and mathematical tools to design hybrid intelligent systems. This book can also be used as a textbook or major reference for graduate courses like the following: soft computing, intelligent pattern recognition, computer vision, applied artificial intel- gence, and similar ones. We consider that this book can also be used to get novel ideas for new lines of research, or to continue the lines of research proposed by the authors of the book.
This book constitutes the refereed proceedings of the 13th International Conference on Machine Learning and Cybernetics, Lanzhou, China, in July 2014. The 45 revised full papers presented were carefully reviewed and selected from 421 submissions. The papers are organized in topical sections on classification and semi-supervised learning; clustering and kernel; application to recognition; sampling and big data; application to detection; decision tree learning; learning and adaptation; similarity and decision making; learning with uncertainty; improved learning algorithms and applications.
The volume delivers a wealth of effective methods to deal with various types of uncertainty inherently existing in human-centric decision problems. It elaborates on comprehensive decision frameworks to handle different decision scenarios, which help use effectively the explicit and tacit knowledge and intuition, model perceptions and preferences in a more human-oriented style.The book presents original approaches and delivers new results on fundamentals and applications related to human-centered decision making approaches to business, economics and social systems. Individual chapters cover multi-criteria (multiattribute) decision making, decision making with prospect theory, decision making with incomplete probabilistic information, granular models of decision making and decision making realized with the use of non-additive measures. New emerging decision theories being presented as along with a wide spectrum of ongoing research make the book valuable to all interested in the field of advanced decision-making. The volume, self-contained in its nature, offers a systematic exposure to the concepts, design methodologies, and detailed algorithms. A prudent balance between the theoretical studies and applications makes the material suitable for researchers and graduate students in information, computer sciences, psychology, cognitive science, economics, system engineering, operation research and management science, risk management, public and social policy.
This book focuses on the key technologies and scientific problems involved in emotional robot systems, such as multimodal emotion recognition (i.e., facial expression/speech/gesture and their multimodal emotion recognition) and emotion intention understanding, and presents the design and application examples of emotional HRI systems.
This book presents an influence analysis between items in time-stamped databases. It covers developments in data analysis and pattern recognition in multiple databases and details the application of intelligent systems modeling to multiple database analysis.
Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery.
This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results.
Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery.
Multi-database mining has been recognized as a strategically essential area of research in data mining. This book discusses various issues regarding the systematic and efficient development of multi-database mining applications.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.