Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Special Offer: Cao Ye Shi Author Set - Buy all three books together and save a total GBP76! Many Biological Nitrogen Removal (BNR) activated sludge processes in warm climates are conservatively designed, because little systematic investigation has been carried out on the BNR activated sludge process in warm or tropical climates, although many studies under temperate climate conditions are available. This book covers a wide spectrum of mechanistic approaches to deal with BNR activated sludge related issues such as sewage and sludge characterization, dynamic performance of full-scale processes, laboratory simulation and modelling that leads to a mechanistic and more economic design. Recommendations on the operation, upgrading and design of BNR activated sludge process are formulated. This will significantly aid the promotion of nitrogen removal in wastewater treatment plants in warm or tropical climates, particularly in developing countries. The book has three purposes: to make recommendations for appropriate upgrading of existing activated sludge processes and assess the performance of the upgraded activated sludge processes; to explore the feasibility of employing laboratory-scale systems to simulate the performance of full-scale processes; and to use mathematical modelling calibrated with the measured data obtained from the laboratory-scale experimentation to study the performance and the design of full-scale processes.Reports are presented of comprehensive studies on: (i) on-site investigation of the activated sludge processes in three water reclamation plants (WRPs) in Singapore; (ii) laboratory-scale investigations to simulate the performance of full-scale activated sludge processes and to optimize the process design; and (iii) mathematical modelling and simulation with Activated Sludge Model No. 1 (ASM No. 1). Based on these detailed studies, guidelines on the operation, upgrading and design of the BNR activated sludge process in warm climates are presented.Results indicate that the laboratory-scale systems, designed based on the scale-down principles developed in this study and mathematic simulation with the model parameters calibrated by using the data obtained from the laboratory experiment, were able to describe the performance of the full-scale process.The applications of the approaches and principles are not limited to geographic locations and types of pollutants, and thus can reduce significantly the cost and time for the process development of the activated sludge process.This book will be an invaluable reference source for process and design engineers and consultants concerned with biological wastewater treatment as well as researchers in universities and research institutes.
Microbial risk assessment is a structured approach to estimating risks associated with environmental exposure to pathogens by using available environmental data. In this report the researchers took advantage of pathogen monitoring of raw sludge efficacy of treatment processes, and pathogen monitoring of post-treatment biosolids. This risk assessment approach is able to estimate risks even for Class A biosolids where post-treatment monitoring data are all below the detectable level. Using this approach this report provides risk estimates for a number of different models to gain insight into risks associated with different aspects of the biosolids treatment and application process. This report provides an approach to conducting risk assessments that takes advantage of pathogen data from raw sludge and data on treatment process efficacy as additional data sources to the post-treatment data. In this context the raw sludge and treatment data are considered prior information that can inform the risk estimate, and the post treatment data is used to inform the likelihood. The risk assessment framework present in this report provides a mechanism to discuss biosolids management microbial risk using a common metric for comparison of treatment methods, management alternatives, and potentially to set risk-based standards for microbial contaminants in biosolids.
A large portion of impaired waterways are located in or near urban areas and are adversely influenced by stormwater-borne solids. The solids have negative impacts on receiving water systems including loss of aquatic habitat, channel instability, and the transport of harmful pollutants potentially hazardous to human and ecosystem health. The current methods for sampling, handling, and analyzing stormwater solids don't lead to a good understanding of these effects on receiving waters. The purpose of the study is to develop a draft protocol addressing sampling, analysis, and reporting practices to examine stormwater-borne solids in order to improve assessment and monitoring protocols. Current accepted practices for characterizing stormwater-borne solids are critically analyzed and revised. Common definitions and standardized monitoring procedures are recommended in this report to aid in understanding solid impacts and selection of stormwater best management practices. Stormwater solids can first be classified based on size into dissolved, fine, coarse and Gross Solids. These solids can further be classified as settleable or suspended by allowing a settling time in the analytical procedure. Obtaining a representative sample in the field is one of the biggest challenges in characterizing stormwater-borne solids because of temporal, geographic, and spatial variations. An outline for developing a monitoring plan for fine solids and Gross Solids is described.
Phase 3 of the overall WERF project was developed to study eight Phase 2 hypotheses in more depth, beginning in the laboratory (bench-scale) studies and continuing on to targeted investigations where the WERF team manipulated plant parameters at full scale to identify the best means of reducing biosolids cake odors. The Phase 3 research specifically sought ways to enhance anaerobicly digested and dewatered biosolids to reduce the odor levels in the biosolids end product, thereby reducing negatively perceived impacts on the environment or to the public when beneficially used on land. The goal of the Phase 3 study was to provide a general application of findings to WERF subscribers who are seeking ways to reduce odors produced by anaerobicly-digested biosolids. The Phase 3 options summary presents a general roadmap for wastewater treatment plant operators seeking to optimize biosolids processing and reduce biosolids cake odors. Biosolids cakes with minimal odors lead to better public acceptance near biosolids management sites and in neighborhoods adjacent to WWTPs. Reduced odors also could open the WWTP dewatered biosolids cake to other recycling or disposal opportunities that are currently not used due to odor and other concerns (including on-plant site composting or storage). Additionally, significant cost savings could be realized by not requiring extensive odor control or other expensive options for containment and management of biosolids.
The Second Edition of the Price of Water expands on the coverage of the first edition and ambitiously develops the theme of the proper management of river basins, both with respect to the control of rivers' water quality and the defence of their quantitative flows from source to sea. Using the hydrosocial balance concept of the first edition, and the grand theory of catchment water deficits, a remarkable breakthrough is made in understanding how river flows are destroyed by human society. Drawing on extensive empirical research into the Kafue River Basin and the Thames River Basin, it is shown that the exhaustion of river flows that we see on a world-wide scale can be explained by just five measurable 'drivers' to basin surplus and basin deficit. Moreover, by specifying the key drivers and measuring their value, the basis is provided for economic, engineering and land management strategies that will reverse river basin destruction. Bringing together 20 papers previously published in refereed journals, The Price of Water provides information that many readers would not otherwise have been able to access to through their professional and academic libraries. The scope of the book is broad, dealing with a diverse range of subjects such as regional and catchment planning and integrated water resources management. Topics considered include: both water quantities and qualities drought management the "e;virtual water"e; controversy farmers water-rights the economic demand for water the design of abstraction charges the cost and use of irrigation water the design of effluent charges the "e;willingness-to-pay"e; methodology catchment water deficits water resource impacts of new property construction water leakage impact on river basins managing water quality within EC directives.
Among animal wastes, piggery waste is the most troublesome. Pig production industries have been growing as the demand for pork meat has increased, and as a result the waste management problem of piggery waste will become more serious in the future. The land receiving the piggery wastes has already become over saturated with Nitrogen and Phosphorus in many countries and the solution to the waste problem is further complicated as the land area utilised for disposal becomes restricted. This book identifies and characterises the key issues involved in dealing with the management of piggery waste and provides recommendations on sustainable treatment regimes. All the technologies available for the treatment of piggery waste are reviewed, including conventional and emerging technologies from composting and anaerobic digestion to nitrate nitrification and denitrification, Anammox, advanced oxidation, adsorption and membrane technologies. Design procedures for biological nitrogen removal are introduced together with temperature effects. Phosphorus removal characteristics as struvite and other biological forms are also reviewed. Integrated treatment schemes are discussed to build an understanding of the systems to achieve sustainable piggery waste management. Examples of integrated systems are presented, including recent modification of lagoon systems in the US; performances of energy recovery systems in Europe; wastewater treatment systems in Korea with limited land area as well as tropical experiences in Singapore and Malaysia.This work will be an invaluable source of information for all those concerned with the research and practice of animal waste treatment. Practising engineers can use this work for planning, design and operation of treatment plants and it will also be suitable as a reference for policy makers and planners.
With increasing water demands, the impetus to use treated wastewater to augment nonpotable and potable water supplies is growing. There is also increasing concern that recycled wastewater might contain contaminants harmful to human health or the aquatic environment. Contaminants of concern include endocrine disrupting compounds (EDCs), compounds that can interfere with the proper functioning of hormone systems. The goal of this research was to develop approaches combining bioassays with chemical analysis to study removal of EDCs by different reclamation treatment process. Hydraulic corresponding composite samples were collected for individual unit operation and analyzed using HPLC-ELIAS, GC-NCI-MS, and bioassays. Whereas estrogenic activity was accounted for by chemical components of primary effluents, more androgenic activity was found than could be explained by testosterone concentrations.
The drinking water and wastewater industries are interested in developing a better understanding of sources of fecal contamination. Microbial source tracking (MST) offers the potential to apportion the contribution of various animal groups to this contamination. However, while there are many methods available there is no clear indication as to the most appropriate approach. There has been little systematic comparison of methods and only a few blind trials, and issues of reproducibility, accuracy, sensitivity, specificity, resolution, and robustness need to be addressed. There is confusion among potential end-users and some disagreement among scientists. Therefore, due to the uncertainty surrounding the most appropriate tools and applications of MST, a workshop of 45 experts representing water and wastewater utilities, academia, state and federal government agencies, medical institutions, and private laboratories was convened in San Antonio, Texas over a three-day period (February 16 - 18, 2005). The overall objective of the workshop was to identify the knowledge gaps and research needs for application of MST technologies by the wastewater and drinking water industries.
Slow sand filtration is typically cited as being the first 'engineered' process in drinking-water treatment. This title provides an assessment on a variety of biofiltration systems from studies conducted around the world.
This book has been produced to give a total overview of the Activated Sludge Model (ASM) family at the start of 2000 and to give the reader easy access to the different models in their original versions. It thus presents ASM1, ASM2, ASM2d and ASM3 together for the first time. Modelling of activated sludge processes has become a common part of the design and operation of wastewater treatment plants. Today models are being used in design, control, teaching and research. Contents ASM3: Introduction, Comparison of ASM1 and ASM3, ASM3: Definition of compounds in the model, ASM3: Definition of processes in the Model, ASM3: Stoichiometry, ASM3: Kinetics, Limitations of ASM3, Aspects of application of ASM3, ASM3C: A Carbon based model, Conclusion ASM 2d: Introduction, Conceptual Approach, ASM 2d, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Limitations, Conclusion ASM 2: Introduction, ASM 2, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Wastewater Characterization for Activated Sludge Processes, Calibration of the ASM 2, Model Limitations, Conclusion, Bibliography ASM 1: Introduction, Method of Model Presentation, Model Incorporating Carbon Oxidation Nitrification and Denitrification, Characterization of Wastewater and Estimation of Parameter Values, Typical Parameter Ranges, Default Values, and Effects of Environmental Factors, Assumptions, Restrictions and Constraints, Implementation of the Activated Sludge Model Scientific and Technical Report No.9
The purpose of this study was to assess the economic feasibility of using large-scale, restored wetlands to assist publicly owned treatment works (POTWs) in meeting the U.S. Environmental Protection Agency's (USEPA) recommended criteria for nutrients, specifically, total nitrogen (2.18 mg/l) and total phosphorous (0.076 mg/l). The assessment compares the cost of nutrient control by advanced wastewater treatment technology to that of wetland treatment technology. The comparison was based on several economic factors: annual operating costs, average costs, marginal costs, and present value. To explore the economic relationship between wastewater and treatment wetlands and to quantify the magnitude of wetland area needed, a case study was developed using the seven water reclamation plants (WRPs) owned and operated by the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) and proposed treatment wetlands located adjacent to the Illinois River in the upper Illinois River watershed. Cost functions for both technologies were developed.
The expanding use of decentralized wastewater management has resulted in an increased interest in small-scale wetland treatment systems. However, there is limited information available on the use, distribution of and performance of these small-scale systems. The purpose of this study was to address this knowledge gap by developing criteria for the feasibility, design, operation, and maintenance of small-scale wetland treatment systems. Monitoring data from the assembled small-scale wetland database was used to develop sizing criteria for FWS and VSB wetlands. Loading rates and corresponding effluent quality were developed for BOD, TSS, TKN, phosphorus, and fecal coliform bacteria. Where there was adequate data, the variation in monthly vs. annual average effluent concentration was assessed to provide a factor-of-safety approach to wetland sizing. Information on internal processes, hydraulic design, operation, maintenance, cost, and industrial applications of constructed wetlands is also presented in this report.
New edition available September 2013 Institutional Governance and Regulation of Water Services provides the key elements of policy, governance and regulation necessary for sustainable water and sanitation services. On policy matters, it covers important aspects of separation of policy and delivery, integrated planning, sustainable cost recovery, provisions for the poor, and transparency. Regulation and Regulatory Bodies are presented in their various forms, with discussion of why some form of independent scrutiny is essential for sustainability. There is a separate chapter on Drinking Water Quality Regulation including setting standards and discussion on how to incorporate managing risk in regulatory approaches.It is the first book to give a comprehensive review of the key elements of policy, governance and regulation for sustainable water services, based on experience from around the world. The focus is on what works and what does not, based on consideration of basic principles and on case studies in both developing and developed countries. Institutional Governance and Regulation of Water Services is an invaluable information source for national and local governments responsible for water policy, for water utility managers, and for students who will be the policy makers of tomorrow. It should also be of value to all those concerned with water policy matters in donor agencies and international banks as well as for academics involved in the teaching of water policy, governance and regulation.About the author: Michael Rouse is a Distinguished Research Associate at the University of Oxford and manages the Institutional Governance and Regulation module of the University's MSc Course on Water Science, Policy and Management. He was formerly Head of the Drinking Water Inspectorate in London and has extensive knowledge and experience of water governance and regulation, including all aspects of audit and enforcement, and the governance issues related to both public sector management and privatisation. He has wide knowledge of water technical and operational matters, based on his applied research and development background at the Water Research Centre, where he spent 9 years as Managing Director. Michael has a good understanding of international water matters and advises governments on policy and regulation. He is a Past President of the International Water Association. He is a visiting professor at Tsinghua University in Beijing and at the Shanghai Academy of Social Science. In 2000 he was awarded the CBE (Commander of the British Empire) for his professional services.
Outbreaks of cryptosporidiosis throughout the world, especially the massive outbreak in Milwakee in 1993 drew public attention to the quality of drinking water supplies and to the efficiency of water treatment methods. Cryptosporidiosis is a severe gastrointestinal disease caused by the transmissive form of Cryptosporidium parvum protozoan and its oocysts. Digestion of as few as 30 oocysts may be fatal to infants, elderly and immunocompromized persons. C. parvum oocysts are ubiquitous in untreated water and extremely resistant to harsh environmental conditions including standard water treatment procedures. We have developed an integrated modeling strategy to quantify the risk of surface drinking water contamination by water borne pathogens, in particular the oocysts of C. parvum, from agricultural non-point pollution sources. This project is comprised of both a modeling and an experimental effort. The main experimental effort focused on the measurement of C. parvum oocysts partitioning in the soil/water systems with the objective of parameterizing the transport model. The pathogen transport model is based on the behavior of a single microorganism and inherently predicts the random variability of pathogen transport.
Fresh water is becoming an ever more valuable and scarce resource, and any method or approach that can contribute to the saving of fresh water resources is therefore beneficial. Dual water supply systems are water supply distribution systems employing two sources, consisting of one fresh water system for potable use, and another system of either seawater, untreated raw fresh water, or treated / reclaimed wastewater for toilet flushing purposes. The purpose of this book is to discuss the engineering and cost aspects of dual water supply systems drawing on the author's experience obtained in Hong Kong, where dual water supply systems have been used for fifty years. The book is suitable for use as a text book or reference book at undergraduate and postgraduate levels. University undergraduate students and postgraduate students in water science, civil engineering, environmental engineering and environmental science or management will be the principal audiences. Practicing engineers, managers and other practitioners in these fields will also find this an invaluable reference source.
Integrated water resource management has been discussed since at least the Civil War; yet, there is still no integrated framework for sustainably managing water. Recognizing this need, the Water Environment Research Foundation (WERF) funded a research project to develop an integrated, conceptual framework for sustainable water resources management. Through WERF funding, this framework was developed over the past four years. Development of the framework was guided by the U.N. Agenda 21, Global Water Partnership, the Enlibra Principles, and Panarchy Theory. The conceptual framework for Sustainable Water Resources Management considers water as a renewable, but finite resource with global and regional constraints. It integrates ecological, economic, and social considerations through institutional and legal/regulatory constructs to move toward sustainable water resources. Implementation of the framework is guided by a process flow chart that considers both crisis management and proactive management activities. Sustainability is as much an outcome as a goal. If water resources are viewed within a total systems context and monitored, assessed and adaptively managed through time, sustainable water resources are the outcome.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.