Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
In 'Awakening of a Soldier, ' the poignant narrative threads together the stories of characters determined to transcend the shackles of poverty and defy the forces attempting to silence their voices. Set against the backdrop of the turbulent 1980s and early 1990s, this captivating novel delves deep into America's racial divide and the battle against drug-related issues that have spread from marginalized communities to mainstream America, some arguing it's fueled by government conspiracies.At the heart of this compelling tale is Nado Dexter, a young black man coming of age in the segregated South. Raised by a single mother who bore the brunt of their neighborhood's hardships, Nado is driven to become her pillar of strength. He resolutely rejects involvement in the pervasive drug trade, yet, in an unfortunate turn of events, becomes entangled in drug-related activities, resulting in his incarceration. His unwavering commitment to his values and his dreams sets him apart in an environment filled with challenges. As Nado navigates the trials of youth and the complexities of his surroundings, he unwittingly becomes a symbol of hope and resilience. His ambition and determination propel him from Baptist Bottom, a once-marginalized community in Dothan, Alabama, to the national stage. Baptist Bottom itself stands as a testament to unyielding endurance, a place that defied redlining and exclusion, where black entrepreneurs, craftsmen, merchants, and entertainers joined forces to shatter the chains of poverty. They refused to be silenced, fostering dreams that transcended adversity.In this thought-provoking novel, Nado's journey mirrors the indomitable spirit of a community that refused to be defined by its past. As his name becomes synonymous with legendary figures like Martin Luther King Jr. and Malcolm X, Nado's story serves as a reminder of the enduring power of community, the pursuit of dreams, and the unbreakable human spirit. 'Awakening of a Soldier' is a mesmerizing exploration of resilience, courage, and the lasting impact of those who rise above the harshest challenges to inspire change and hope for a brighter future."
In a realm where magic is woven into the very fabric of existence, a radiant unicorn named Ruby and a spirited horse called Spirit embark on a wondrous journey through realms unknown. Their destinies are entwined by a cosmic thread, leading them to a galaxy called Triangulum, where the stars themselves hold secrets of enchantment and peril.Ruby, with her opalescent coat and moonlight-like horn, possesses a power beyond imagination. Legends speak of her ability to heal wounds and mend broken spirits, radiating tranquility and hope. By her side gallops Spirit, a horse of fiery determination and unwavering loyalty, whose hooves dance to the rhythm of freedom.As they journey through the universe, they spread love, laughter, and the magic of their friendship. Together, they show the world that true friendship knows no boundaries. Their music, dance, and love create a symphony that resonates throughout the cosmos, inspiring all who cross their path.But their cosmic adventure is not without challenges. In the depths of Triangulum, strange and otherworldly creatures with sinister motives lurk. Unfathomable evils stir beneath the surface, and Ruby's radiant magic becomes the coveted prize of those who seek dominion over the incomprehensible forces of the galaxy.Amidst their travels, Ruby and Spirit venture beyond the Milky Way Galaxy, passing through distant realms like the Canis Dwarf Galaxy, the Magellanic Clouds Galaxy, and the Andromeda Galaxy. Along the way, they encounter mystical creatures, breathtaking sights, and even malevolent beings who covet their magical powers.Chased relentlessly by those who seek to capture them, Ruby and Spirit soar through the cosmos, utilizing Ruby's magic to protect themselves and evade danger. Their journey is a testament to the unbreakable bond of friendship and the enduring power of love."A Story of True Friendship: Ruby and Spirit's Cosmic Journey" is a heartwarming and magical tale that invites readers to believe in the extraordinary, to embrace the bonds that connect us, and to embark on their own cosmic adventures of love, laughter, and friendship.
Physics is expressed in the language of mathematics; it is deeply ingrained in how physics is taught and how it's practiced. A study of the mathematics used in science is thus asound intellectual investment for training as scientists and engineers. This first volume of two is centered on methods of solving partial differential equations (PDEs) and the special functions introduced. Solving PDEs can't be done, however, outside of the context in which they apply to physical systems. The solutions to PDEs must conform to boundary conditions, a set of additional constraints in space or time to be satisfied at the boundaries of the system, that small part of the universe under study. The first volume is devoted to homogeneous boundary-value problems (BVPs), homogeneous implying a system lacking a forcing function, or source function. The second volume takes up (in addition to other topics) inhomogeneous problems where, in addition to the intrinsic PDE governing a physical field, source functions are an essential part of the system. This text is based on a course offered at the Naval Postgraduate School (NPS) and while produced for NPS needs, it will serve other universities well. It is based on the assumption that it follows a math review course, and was designed to coincide with the second quarter of student study, which is dominated by BVPs but also requires an understanding of special functions and Fourier analysis.
There are more than 20 million chemicals in the literature, with new materials being synthesized each week. Most of these molecules are stable, and the 3-dimensional arrangement of the atoms in the molecules, in the various solids may be determined by routine x-ray crystallography. When this is done, it is found that this vast range of molecules, with varying sizes and shapes can be accommodated by only a handful of solid structures. This limited number of architectures for the packing of molecules of all shapes and sizes, to maximize attractive intermolecular forces and minimizing repulsive intermolecular forces, allows us to develop simple models of what holds the molecules together in the solid. In this volume we look at the origin of the molecular architecture of crystals; a topic that is becoming increasingly important and is often termed, crystal engineering. Such studies are a means of predicting crystal structures, and of designing crystals with particular properties by manipulating the structure and interaction of large molecules. That is, creating new crystal architectures with desired physical characteristics in which the molecules pack together in particular architectures; a subject of particular interest to the pharmaceutical industry.
After a quarter century of discoveries that rattled the foundations of classical mechanics and electrodynamics, the year 1926 saw the publication of two works intended to provide a theoretical structure to support new quantum explanations of the subatomic world. Heisenberg's matrix mechanics and Schrodinger's wave mechanics provided compatible but mathematically disparate ways of unifying the discoveries of Planck, Einstein, Bohr and many others. Efforts began immediately to prove the equivalence of these two structures, culminated successfully by John von Neumann's 1932 volume "Mathematical Foundations of Quantum Mechanics." This forms the springboard for the current effort. We begin with a presentation of a minimal set of von Neumann postulates while introducing language and notation to facilitate subsequent discussion of quantum calculations based in finite dimensional Hilbert spaces. Chapters which follow address two-state quantum systems (with spin one-half as the primary example), entanglement of multiple two-state systems, quantum angular momentum theory and quantum approaches to statistical mechanics. A concluding chapter gives an overview of issues associated with quantum mechanics in continuous infinite-dimensional Hilbert spaces.
He's back! The physicist returns with an entirely new compilation of questions and answers from his long-lived website where laypeople can ask questions about anything physics related. This book focuses on adjectives (practical, beautiful, surprising, cool, frivolous) instead of nouns like the first two books (atoms, photons, quanta, mechanics, relativity). The answers within 'Physics Is' are responses to people looking for answers to fascinating (and often uninformed) questions. It covers topics such as sports, electromagnetism, gravitational theory, special relativity, superheroes, videogames, and science fiction.These books are designed for laypeople and rely heavily on concepts rather than formalism. That said, they keep the physics correct and don't water down, so expert physicists will find this book and its two companion titles fun reads. They may actually recognize similar questions posed to them by friends and family. As with the first two books, 'Physics Is' ends with a chapter with questions from people who think that 'The physicist' is a psychic and from people who think they have the answers to life, the universe and everything.
Nonlinear physics is a well-established discipline in physics today, and this book offers a comprehensive account of the basic soliton theory and its applications. Although primarily mathematical, the theory for nonlinear phenomena in practical environment
Monte Carlo methods have been very prominent in computer simulation of various systems in physics, chemistry, biology, and materials science. This book focuses on the discussion and path-integral quantum Monte Carlo methods in many-body physics and provides a concise but complete introduction to the Metropolis algorithm and its applications in these two techniques. To explore the schemes in clarity, several quantum many-body systems are analysed and studied in detail. The book includes exercises to help digest the materials covered. It can be used as a tutorial to learn the discussion and path-integral Monte Carlo or a recipe for developing new research in the reader's own area. Two complete Java programs, one for the discussion Monte Carlo of 4^He clusters on a graphite surface and the other for the path-integral Monte Carlo of cold atoms in a potential trap, are ready for download and adoption.
Biophotonic diagnostics/biomedical spectroscopy can revolutionise the medical environment by providing a responsive and objective diagnostic environment. This book aims to explain the fundamentals of the physical techniques used combined with the particular requirements of analysing medical/clinical samples as a resource for any interested party. In addition, it will show the potential of this field for the future of medical science and act as a driver for translation across many different biological problems/questions.
The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo, this can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to externally applied stimuli that usually involve application of physical energy. This physical energy can be applied from outside the body and can either cause cargo release, or can activate the nanostructure to be cytotoxic, or both. The stimuli covered include light of various wavelengths (ultraviolet, visible or infrared), temperature (increased or decreased), magnetic fields (used to externally manipulate nanostructures and to activate them), ultrasound, and electrical and mechanical forces. Finally we discuss the issue of nanotoxicology and the future scope of the field.
The new field of physical biology fuses biology and physics. New technologies have allowed researchers to observe the inner workings of the living cell, one cell at a time. With an abundance of new data collected on individual cells, including observations of individual molecules and their interactions, researchers are developing a quantitative, physics-based understanding of life at the molecular level. They are building detailed models of how cells use molecular circuits to gather and process information, signal to each other, manage noise and variability, and adapt to their environment. This book narrows down the scope of physical biology by focusing on the microbial cell. It explores the physical phenomena of noise, feedback, and variability that arise in the cellular information-processing circuits used by bacteria. It looks at the microbe from a physics perspective, to ask how the cell optimizes its function to live within the constraints of physics. It introduces a physical and information based -- as opposed to microbiological -- perspective on communication and signaling between microbes. The book is aimed at non-expert scientists who wish to understand some of the most important emerging themes of physical biology, and to see how they help us to understand the most basic forms of life.
This book is based on a commitment to teaching science to everybody. What may work for training professional scientists does not work for general science education. Students bring to the classrooms preconceived attitudes, as well as the emotional baggage called science anxiety. Students may regard science as cold, unfriendly, and even inherently hostile and biased against women. This book has been designed to deal with each of these issues and results from research in both Denmark and the United States.
This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.
Few artworks have been the subject of more extensive modern interpretation than Melencolia I by renowned artist, mathematician, and scientist Albrecht Dürer (1514). And yet, did each of these art experts and historians miss a secret manifesto that Dürer included within the engraving? This is the first work to decrypt secrets within Melencolia I based not on guesswork, but Dürer's own writings, other subliminal artists that inspired him (i.e., Leonardo da Vinci), the Jewish and Christian Bibles, and books that inspired Dürer (De Occulta Philosophia and the Hieorglyphica). To read the covert message of Melencolia I is to understand that Dürer was a humanist in his interests in mathematics, science, poetry, and antiquity. This book recognizes his unparalleled power with the burin, his mathematical skill in perspective, his dedication to precise language, and his acute observation of nature. Melencolia I may also be one of the most controversial (and at the time most criminal) pieces of art as it hid Dürer's disdain for the hierarchy of the Catholic Church, the Kaiser, and the Holy Roman Empire from the general public for centuries. This book closely ties the origins of philosophy (science) and the work of a Renaissance master together, and will be of interest for anyone who loves scientific history, art interpretation, and secret manifestos.
The present theme concerns the forces of nature, and what investigations of these forces can tell us about the world we see about us. The story of these forces is long and complex, and contains many episodes that are not atypical of the bulk of scientific research, which could have achieved greater acclaim 'if only...'. The intention of this book is to introduce ideas of how the visible world, and those parts of it that we cannot observe, either because they are too small or too large for our scale of perception, can be understood by consideration of only a few fundamental forces. The subject in these pages will be the authority of the commonly termed, laws of physics, which arise from the forces of nature, and the corresponding constants of nature (for example, the speed of light, c, the charge of the electron, e, or the mass of the electron, me).
The confocal microscope is appropriate for imaging cells or the measurement of industrial artefacts. However, junior researchers and instrument users sometimes misuse imaging concepts and metrological characteristics, such as position resolution in industrial metrology and scale resolution in bio-imaging. And, metrological characteristics or influence factors in 3D measurement such as height assessment error caused by 3D coupling effect are so far not yet identified. In this book, the authors outline their practices by the working experiences on standardization and system design. This book assumes little previous knowledge of optics, but rich experience in engineering of industrial measurements, in particular with profile metrology or areal surface topography will be very helpful to understand the theoretical concerns and value of the technological advances. It should be useful for graduate students or researchers as extended reading material, as well as microscope users alongside their handbook.
Tai Chi, a Chinese martial art developed based on the laws of nature, emphasises how 'to conquer the unyielding with the yielding.' The recent observation of star formation shows that stars result from the interaction between gravity, turbulence and magnetic fields. This interaction again follows the natural rules that inspired Tai Chi. For example, if self-gravity is the force that dominates, the molecular cloud will collapse isotropically, which compresses magnetic field lines. The density of the yielding field lines increases until magnetic pressure reaches the critical value to support the cloud against the gravitational force in directions perpendicular to the field lines (Lorentz force). Then gravity gives way to Lorentz force, accumulating gas only along the field lines till the gas density achieves the critical value to again compress the field lines. The Tai Chi goes on in a self similar way.
'Light' from low level laser therapy, through a process called photobiomodulation (PBM), has been in existence in supportive care in cancer, in particular in the management of oral mucositis (OM) in patients undergoing chemotherapy, radiation therapy and haematopoietic stem cell transplantation. In this book the authors attempt to portray the current status of the supportive care interventions that are possible with PBM using low level laser therapy (LLLT) in patients undergoing cancer treatment for solid tumours, harmatological malignancies, and head and neck cancers.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.