Markedets billigste bøger
Levering: 1 - 2 hverdage

Bøger udgivet af Springer New York

Filter
Filter
Sorter efterSorter Populære
  • af F. John
    566,95 kr.

    The author would like to acknowledge his obligation to all his (;Olleagues and friends at the Institute of Mathematical Sciences of New York University for their stimulation and criticism which have contributed to the writing of this tract. The author also wishes to thank Aughtum S. Howard for permission to include results from her unpublished dissertation, Larkin Joyner for drawing the figures, Interscience Publishers for their cooperation and support, and particularly Lipman Bers, who suggested the publication in its present form. New Rochelle FRITZ JOHN September, 1955 [v] CONTENTS Introduction. . . . . . . 1 CHAPTER I Decomposition of an Arbitrary Function into Plane Waves Explanation of notation . . . . . . . . . . . . . . . 7 The spherical mean of a function of a single coordinate. 7 9 Representation of a function by its plane integrals . CHAPTER II Tbe Initial Value Problem for Hyperbolic Homogeneous Equations with Constant Coefficients Hyperbolic equations. . . . . . . . . . . . . . . . . . . . . . 15 Geometry of the normal surface for a strictly hyperbolic equation. 16 Solution of the Cauchy problem for a strictly hyperbolic equation . 20 Expression of the kernel by an integral over the normal surface. 23 The domain of dependence . . . . . . . . . . . . . . . . . . . 29 The wave equation . . . . . . . . . . . . . . . . . . . . . . 32 The initial value problem for hyperbolic equations with a normal surface having multiple points . . . . . . . . . . . . . . . . . . . . 36 CHAPTER III The Fundamental Solution of a Linear Elliptic Differential Equation witL Analytic Coefficients Definition of a fundamental solution . . . . . . . . . . . . . . 43 The Cauchy problem . . . . . . . . . . . . . . . . . . . . . 45 Solution of the inhomogeneous equation with a plane wave function as right hand side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 The fundamental solution. . . . . . . . . . . . . . . . . . . . . .

  • af P. Kelly & G. Matthews
    580,95 kr.

  • af R. E. Edwards
    850,95 kr.

  • af Alexander G. Ramm
    580,95 kr.

    This book is intended for &tudents, research engineers, and mathematicians interested in applications or numerical analysis. Pure analysts will also find some new problems to tackle. Most of the material can be understood by a reader with a relatively modest knowledge of differential and inte- gral equations and functional analysis. Readers interested in stochastic optimization will find a new theory of prac- tical . importance. Readers interested in problems of static and quasi-static electrodynamics, wave scattering by small bodies of arbitrary shape, and corresponding applications in geophysics, optics, and radiophysics will find explicit analytical formulas for the scattering matrix, polarizability tensor, electrical capacitance of bodies of an arbitrary shape; numerical examples showing the practical utility of these formulas; two-sided variational estimates for the pol- arizability tensor; and some open problems such as working out a standard program for calculating the capacitance and polarizability of bodies of arbitrary shape and numerical calculation of multiple integrals with weak singularities. Readers interested in nonlinear vibration theory will find a new method for qualitative study of stationary regimes in the general one-loop passive nonlinear network, including stabil- ity in the large, convergence, and an iterative process for calculation the stationary regime. No assumptions concerning the smallness of the nonlinearity or the filter property of the linear one-port are made. New results in the theory of nonlinear operator equations form the basis for the study.

  • af Charles E. Rickart
    572,95 kr.

    The term "e;function algebra"e; usually refers to a uniformly closed algebra of complex valued continuous functions on a compact Hausdorff space. Such Banach alge- bras, which are also called "e;uniform algebras"e;, have been much studied during the past 15 or 20 years. Since the most important examples of uniform algebras consist of, or are built up from, analytic functions, it is not surprising that most of the work has been dominated by questions of analyticity in one form or another. In fact, the study of these special algebras and their generalizations accounts for the bulk of the re- search on function algebras. We are concerned here, however, with another facet of the subject based on the observation that very general algebras of continuous func- tions tend to exhibit certain properties that are strongly reminiscent of analyticity. Although there exist a variety of well-known properties of this kind that could be mentioned, in many ways the most striking is a local maximum modulus principle proved in 1960 by Hugo Rossi [RIl]. This result, one of the deepest and most elegant in the theory of function algebras, is an essential tool in the theory as we have developed it here. It holds for an arbitrary Banaeh algebra of GBPunctions defined on the spectrum (maximal ideal space) of the algebra. These are the algebras, along with appropriate generalizations to algebras defined on noncompact spaces, that we call "e;natural func- tion algebras"e;.

  • af J. Roberts, Tod Snook, C. Bass, mfl.
    559,95 kr.

  • af J. L. Wilson
    599,95 kr.

  • af P. J. Hilton & H. B. Griffiths
    608,95 kr.

  • af Georg Polya
    877,95 kr.

    The present English edition is not a mere translation of the German original. Many new problems have been added and there are also other changes, mostly minor. Yet all the alterations amount to less than ten percent of the text. We intended to keep intact the general plan and the original flavor of the work. Thus we have not introduced any essentially new subject matter, although the mathematical fashion has greatly changed since 1924. We have restricted ourselves to supplementing the topics originally chosen. Some of our problems first published in this work have given rise to extensive research. To include all such developments would have changed the character of the work, and even an incomplete account, which would be unsatisfactory in itself, would have cost too much labor and taken up too much space. We have to thank many readers who, since the publication of this work almost fifty years ago, communicated to us various remarks on it, some of which have been incorporated into this edition. We have not listed their names; we have forgotten the origin of some contributions, and an incomplete list would have been even less desirable than no list. The first volume has been translated by Mrs. Dorothee Aeppli, the second volume by Professor Claude Billigheimer. We wish to express our warmest thanks to both for the unselfish devotion and scrupulous conscientiousness with which they attacked their far from easy task.

  • af M. Schreiber
    567,95 kr.

    A working knowledge of differential forms so strongly illuminates the calculus and its developments that it ought not be too long delayed in the curriculum. On the other hand, the systematic treatment of differential forms requires an apparatus of topology and algebra which is heavy for beginning undergraduates. Several texts on advanced calculus using differential forms have appeared in recent years. We may cite as representative of the variety of approaches the books of Fleming [2], (1) Nickerson-Spencer-Steenrod [3], and Spivak [6]. . Despite their accommodation to the innocence of their readers, these texts cannot lighten the burden of apparatus exactly because they offer a more or less full measure of the truth at some level of generality in a formally precise exposition. There. is consequently a gap between texts of this type and the traditional advanced calculus. Recently, on the occasion of offering a beginning course of advanced calculus, we undertook the expe- ment of attempting to present the technique of differential forms with minimal apparatus and very few prerequisites. These notes are the result of that experiment. Our exposition is intended to be heuristic and concrete. Roughly speaking, we take a differential form to be a multi-dimensional integrand, such a thing being subject to rules making change-of-variable calculations automatic. The domains of integration (manifolds) are explicitly given "e;surfaces"e; in Euclidean space. The differentiation of forms (exterior (1) Numbers in brackets refer to the Bibliography at the end.

  • af W. R. Fuller
    567,95 kr.

  • af P. Kraft
    562,95 kr.

  • af Charles D. Stiles & Milton H. Jr. Saier
    563,95 kr.

  • af N. Jacobson
    916,95 - 920,95 kr.

    The present volume completes the series of texts on algebra which the author began more than ten years ago. The account of field theory and Galois theory which we give here is based on the notions and results of general algebra which appear in our first volume and on the more elementary parts of the second volume, dealing with linear algebra. The level of the present work is roughly the same as that of Volume II. In preparing this book we have had a number of objectives in mind. First and foremost has been that of presenting the basic field theory which is essential for an understanding of modern algebraic number theory, ring theory, and algebraic geometry. The parts of the book concerned with this aspect of the subject are Chapters I, IV, and V dealing respectively with finite dimen- sional field extensions and Galois theory, general structure theory of fields, and valuation theory. Also the results of Chapter IlIon abelian extensions, although of a somewhat specialized nature, are of interest in number theory. A second objective of our ac- count has been to indicate the links between the present theory of fields and the classical problems which led to its development.

  • af P. R. Halmos & Steven Givant
    806,95 kr.

  • af Frauke Beller, K. Knörr, C. Lauritzen & mfl.
    583,95 kr.

  • af M. Golubitsky
    1.007,95 kr.

    This book aims to present to first and second year graduate students a beautiful and relatively accessible field of mathematics-the theory of singu- larities of stable differentiable mappings. The study of stable singularities is based on the now classical theories of Hassler Whitney, who determined the generic singularities (or lack of them) of Rn ~ Rm (m ~ 2n - 1) and R2 ~ R2, and Marston Morse, for mappings who studied these singularities for Rn ~ R. It was Rene Thorn who noticed (in the late '50's) that all of these results could be incorporated into one theory. The 1960 Bonn notes of Thom and Harold Levine (reprinted in [42]) gave the first general exposition of this theory. However, these notes preceded the work of Bernard Malgrange [23] on what is now known as the Malgrange Preparation Theorem-which allows the relatively easy computation of normal forms of stable singularities as well as the proof of the main theorem in the subject-and the definitive work of John Mather. More recently, two survey articles have appeared, by Arnold [4] and Wall [53], which have done much to codify the new material; still there is no totally accessible description of this subject for the beginning student. We hope that these notes will partially fill this gap. In writing this manuscript, we have repeatedly cribbed from the sources mentioned above-in particular, the Thom-Levine notes and the six basic papers by Mather.

  • af R. Beals
    572,95 - 581,95 kr.

    Once upon a time students of mathematics and students of science or engineering took the same courses in mathematical analysis beyond calculus. Now it is common to separate"e; advanced mathematics for science and engi- neering"e; from what might be called "e;advanced mathematical analysis for mathematicians."e; It seems to me both useful and timely to attempt a reconciliation. The separation between kinds of courses has unhealthy effects. Mathe- matics students reverse the historical development of analysis, learning the unifying abstractions first and the examples later (if ever). Science students learn the examples as taught generations ago, missing modern insights. A choice between encountering Fourier series as a minor instance of the repre- sentation theory of Banach algebras, and encountering Fourier series in isolation and developed in an ad hoc manner, is no choice at all. It is easy to recognize these problems, but less easy to counter the legiti- mate pressures which have led to a separation. Modern mathematics has broadened our perspectives by abstraction and bold generalization, while developing techniques which can treat classical theories in a definitive way. On the other hand, the applier of mathematics has continued to need a variety of definite tools and has not had the time to acquire the broadest and most definitive grasp-to learn necessary and sufficient conditions when simple sufficient conditions will serve, or to learn the general framework encompass- ing different examples.

  • af G. Takeuti
    1.015,95 kr.

    This text deals with three basic techniques for constructing models of Zermelo-Fraenkel set theory: relative constructibility, Cohen's forcing, and Scott-Solovay's method of Boolean valued models. Our main concern will be the development of a unified theory that encompasses these techniques in one comprehensive framework. Consequently we will focus on certain funda- mental and intrinsic relations between these methods of model construction. Extensive applications will not be treated here. This text is a continuation of our book, "e;I ntroduction to Axiomatic Set Theory,"e; Springer-Verlag, 1971; indeed the two texts were originally planned as a single volume. The content of this volume is essentially that of a course taught by the first author at the University of Illinois in the spring of 1969. From the first author's lectures, a first draft was prepared by Klaus Gloede with the assistance of Donald Pelletier and the second author. This draft was then rcvised by the first author assisted by Hisao Tanaka. The introductory material was prepared by the second author who was also responsible for the general style of exposition throughout the text. We have inc1uded in the introductory material al1 the results from Boolean algebra and topology that we need. When notation from our first volume is introduced, it is accompanied with a deflnition, usually in a footnote. Consequently a reader who is familiar with elementary set theory will find this text quite self-contained.

  • af W. D. Means
    1.018,95 kr.

  • af Neil English
    342,95 kr.

  • af Pekka Lappalainen
    939,95 kr.

  • af Andrei A. Snarskii, Igor V. Bezsudnov, Vladimir A. Sevryukov, mfl.
    1.395,95 kr.

  • - A Functional Analysis Framework
    af Kendall Atkinson & Weimin Han
    751,95 kr.

    This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solution, numerical methods for solving integral equations of the second kind, and boundary integral equations for planar regions. The presentation of each topic is meant to be an introduction with certain degree of depth. Comprehensive references on a particular topic are listed at the end of each chapter for further reading and study. Because of the relevance in solving real world problems, multivariable polynomials are playing an ever more important role in research and applications. In this third editon, a new chapter on this topic has been included and some major changes are made on two chapters from the previous edition. In addition, there are numerous minor changes throughout the entire text and new exercises are added.Review of earlier edition:"e;...the book is clearly written, quite pleasant to read, and contains a lot of important material; and the authors have done an excellent job at balancing theoretical developments, interesting examples and exercises, numerical experiments, and bibliographical references."e;R. Glowinski, SIAM Review, 2003

  • af Simon Tavaré, Michael S. Waterman & Richard C. Deonier
    745,95 kr.

  • af Alain M. Robert
    687,95 kr.

    Kurt Hensel (1861-1941) discovered the p-adic numbers around the turn of the century. These exotic numbers (or so they appeared at first) are now well-established in the mathematical world and used more and more by physicists as well. This book offers a self-contained presentation of basic p-adic analysis. The author is especially interested in the analytical topics in this field. Some of the features which are not treated in other introductory p-adic analysis texts are topological models of p-adic spaces inside Euclidean space, a construction of spherically complete fields, a p-adic mean value theorem and some consequences, a special case of Hazewinkel's functional equation lemma, a remainder formula for the Mahler expansion, and most importantly a treatment of analytic elements.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.