Udvidet returret til d. 31. januar 2025

A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning

Bag om A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning

A Markov Decision Process (MDP) is a natural framework for formulating sequential decision-making problems under uncertainty. In recent years, researchers have greatly advanced algorithms for learning and acting in MDPs. This book reviews such algorithms.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781601987600
  • Indbinding:
  • Paperback
  • Sideantal:
  • 92
  • Udgivet:
  • 19. december 2013
  • Størrelse:
  • 156x234x5 mm.
  • Vægt:
  • 143 g.
  • BLACK NOVEMBER
  Gratis fragt
Leveringstid: 8-11 hverdage
Forventet levering: 6. december 2024

Beskrivelse af A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning

A Markov Decision Process (MDP) is a natural framework for formulating sequential decision-making problems under uncertainty. In recent years, researchers have greatly advanced algorithms for learning and acting in MDPs. This book reviews such algorithms.

Brugerbedømmelser af A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning



Find lignende bøger
Bogen A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.