Udvidet returret til d. 31. januar 2025

Algorithms for Random Generation and Counting: A Markov Chain Approach

Bag om Algorithms for Random Generation and Counting: A Markov Chain Approach

This monograph is a slightly revised version of my PhD thesis [86], com­ pleted in the Department of Computer Science at the University of Edin­ burgh in June 1988, with an additional chapter summarising more recent developments. Some of the material has appeared in the form of papers [50,88]. The underlying theme of the monograph is the study of two classical problems: counting the elements of a finite set of combinatorial structures, and generating them uniformly at random. In their exact form, these prob­ lems appear to be intractable for many important structures, so interest has focused on finding efficient randomised algorithms that solve them ap­ proxim~ly, with a small probability of error. For most natural structures the two problems are intimately connected at this level of approximation, so it is natural to study them together. At the heart of the monograph is a single algorithmic paradigm: sim­ ulate a Markov chain whose states are combinatorial structures and which converges to a known probability distribution over them. This technique has applications not only in combinatorial counting and generation, but also in several other areas such as statistical physics and combinatorial optimi­ sation. The efficiency of the technique in any application depends crucially on the rate of convergence of the Markov chain.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9780817636586
  • Indbinding:
  • Hardback
  • Sideantal:
  • 160
  • Udgivet:
  • 1. februar 1993
  • Størrelse:
  • 160x14x241 mm.
  • Vægt:
  • 412 g.
  • BLACK NOVEMBER
  Gratis fragt
Leveringstid: 8-11 hverdage
Forventet levering: 21. november 2024

Beskrivelse af Algorithms for Random Generation and Counting: A Markov Chain Approach

This monograph is a slightly revised version of my PhD thesis [86], com­ pleted in the Department of Computer Science at the University of Edin­ burgh in June 1988, with an additional chapter summarising more recent developments. Some of the material has appeared in the form of papers [50,88]. The underlying theme of the monograph is the study of two classical problems: counting the elements of a finite set of combinatorial structures, and generating them uniformly at random. In their exact form, these prob­ lems appear to be intractable for many important structures, so interest has focused on finding efficient randomised algorithms that solve them ap­ proxim~ly, with a small probability of error. For most natural structures the two problems are intimately connected at this level of approximation, so it is natural to study them together. At the heart of the monograph is a single algorithmic paradigm: sim­ ulate a Markov chain whose states are combinatorial structures and which converges to a known probability distribution over them. This technique has applications not only in combinatorial counting and generation, but also in several other areas such as statistical physics and combinatorial optimi­ sation. The efficiency of the technique in any application depends crucially on the rate of convergence of the Markov chain.

Brugerbedømmelser af Algorithms for Random Generation and Counting: A Markov Chain Approach



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.