Udvidet returret til d. 31. januar 2025

Combinatorial Properties of Periodic Patterns in Compressed Strings

Bag om Combinatorial Properties of Periodic Patterns in Compressed Strings

In this thesis, we study the following three types of periodic string patterns and some of their variants. Firstly, we consider maximal d-repetitions. These are substrings that are at least 2+d times as long as their minimum period. Secondly, we consider 3-cadences. These are arithmetic subsequence of three equal characters. Lastly, we consider maximal pairs. These are pairs of identical substrings. Maximal d-repetitions and maximal pairs of uncompressed strings are already well-researched. However, no non-trivial upper bound for distinct occurrences of these patterns that take the compressed size of the underlying strings into account were known prior to this research. We provide upper bounds for several variants of these two patterns that depend on the compressed size of the string, the logarithm of the string's length, the highest allowed power and d. These results also lead to upper bounds and new insights for the compacted directed acyclic word graph and the run-length encoded Burrows-Wheeler transform. We prove that cadences with three elements can be efficiently counted in uncompressed strings and can even be efficiently detected on grammar-compressed binary strings. We also show that even slightly more difficult variants of this problem are already NP-hard on compressed strings. Along the way, we extend the underlying geometry of the convolution from rectangles to arbitrary polygons. We also prove that this non-rectangular convolution can still be efficiently computed.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783961001910
  • Indbinding:
  • Paperback
  • Sideantal:
  • 162
  • Udgivet:
  • 10. oktober 2023
  • Størrelse:
  • 148x11x210 mm.
  • Vægt:
  • 244 g.
  • BLACK NOVEMBER
Leveringstid: 2-3 uger
Forventet levering: 6. december 2024

Beskrivelse af Combinatorial Properties of Periodic Patterns in Compressed Strings

In this thesis, we study the following three types of periodic string patterns and some of their variants.
Firstly, we consider maximal d-repetitions. These are substrings that are at least 2+d times as long as their minimum period.
Secondly, we consider 3-cadences. These are arithmetic subsequence of three equal characters.
Lastly, we consider maximal pairs. These are pairs of identical substrings.
Maximal d-repetitions and maximal pairs of uncompressed strings are already well-researched. However, no non-trivial upper bound for distinct occurrences of these patterns that take the compressed size of the underlying strings into account were known prior to this research.
We provide upper bounds for several variants of these two patterns that depend on the compressed size of the string, the logarithm of the string's length, the highest allowed power and d.
These results also lead to upper bounds and new insights for the compacted directed acyclic word graph and the run-length encoded Burrows-Wheeler transform.
We prove that cadences with three elements can be efficiently counted in uncompressed strings and can even be efficiently detected on grammar-compressed binary strings. We also show that even slightly more difficult variants of this problem are already NP-hard on compressed strings.
Along the way, we extend the underlying geometry of the convolution from rectangles to arbitrary polygons. We also prove that this non-rectangular convolution can still be efficiently computed.

Brugerbedømmelser af Combinatorial Properties of Periodic Patterns in Compressed Strings



Find lignende bøger
Bogen Combinatorial Properties of Periodic Patterns in Compressed Strings findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.