Udvidet returret til d. 31. januar 2025

Distributionally Robust Learning

Bag om Distributionally Robust Learning

Presents a comprehensive statistical learning framework that uses Distributionally Robust Optimization (DRO) under the Wasserstein metric to ensure robustness to perturbationsin the data. The authors introduce the reader to the fundamental properties of the Wasserstein metric and the DRO formulation, before explaining the theory in detail.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781680837728
  • Indbinding:
  • Paperback
  • Sideantal:
  • 256
  • Udgivet:
  • 23. december 2020
  • Størrelse:
  • 156x234x0 mm.
  • Vægt:
  • 365 g.
  • BLACK NOVEMBER
  Gratis fragt
Leveringstid: 2-3 uger
Forventet levering: 11. december 2024

Beskrivelse af Distributionally Robust Learning

Presents a comprehensive statistical learning framework that uses Distributionally Robust Optimization (DRO) under the Wasserstein metric to ensure robustness to perturbationsin the data. The authors introduce the reader to the fundamental properties of the Wasserstein metric and the DRO formulation, before explaining the theory in detail.

Brugerbedømmelser af Distributionally Robust Learning



Find lignende bøger
Bogen Distributionally Robust Learning findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.