Markedets billigste bøger
Levering: 1 - 2 hverdage

Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Constrained IoT Edge Devices

Bag om Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Constrained IoT Edge Devices

This book describes an extensive and consistent soft error assessment of convolutional neural network (CNN) models from different domains through more than 14.8 million fault injections, considering different precision bit-width configurations, optimization parameters, and processor models. The authors also evaluate the relative performance, memory utilization, and soft error reliability trade-offs analysis of different CNN models considering a compiler-based technique w.r.t. traditional redundancy approaches.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783031186011
  • Indbinding:
  • Paperback
  • Sideantal:
  • 148
  • Udgivet:
  • 3. januar 2024
  • Udgave:
  • 24001
  • Størrelse:
  • 168x9x240 mm.
  • Vægt:
  • 261 g.
  Gratis fragt
Leveringstid: 8-11 hverdage
Forventet levering: 16. januar 2025

Beskrivelse af Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Constrained IoT Edge Devices

This book describes an extensive and consistent soft error assessment of convolutional neural network (CNN) models from different domains through more than 14.8 million fault injections, considering different precision bit-width configurations, optimization parameters, and processor models. The authors also evaluate the relative performance, memory utilization, and soft error reliability trade-offs analysis of different CNN models considering a compiler-based technique w.r.t. traditional redundancy approaches.

Brugerbedømmelser af Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Constrained IoT Edge Devices



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.