Udvidet returret til d. 31. januar 2025

Experimental and Computational Heat Transfer Analysis of Heat Sink

Experimental and Computational Heat Transfer Analysis of Heat Sinkaf Surendra Singh Yadav
Bag om Experimental and Computational Heat Transfer Analysis of Heat Sink

Proper dissipation of thermal energy from a system is always a requirement for many equipment and industries. Any device that runs using external power source always generates heat. The generated heat in such systems must be expelled to the surrounding. Maximizing the surface area of the devices generally enhances the cooling rate. However, it makes the system bulky. Therefore, a proper utilization of the surface area of the system is an important parameter to have an efficient heat dissipation system. It was always desirable to have a heat sink in the all devices that occupy minimum space with maximum effectiveness. The present work analyse conjugate heat transfer physics in a 3-D system of aluminium pin fins, with air as the working fluid. A finite volume solver, ANSYS Fluent has been used in simulating a staggered pin fin arrangement placed over a base plate. The solver is validated using the experimental data. The thermal analysis has been performed on fins with various cross sections. Consideration is given to fins having circular, hexagonal, pentagonal, triangular and drop-shaped cross sections with various inlet velocities.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9786207452699
  • Indbinding:
  • Paperback
  • Sideantal:
  • 52
  • Udgivet:
  • 2. januar 2024
  • Størrelse:
  • 150x4x220 mm.
  • Vægt:
  • 96 g.
  • BLACK NOVEMBER
Leveringstid: 2-3 uger
Forventet levering: 11. december 2024

Beskrivelse af Experimental and Computational Heat Transfer Analysis of Heat Sink

Proper dissipation of thermal energy from a system is always a requirement for many equipment and industries. Any device that runs using external power source always generates heat. The generated heat in such systems must be expelled to the surrounding. Maximizing the surface area of the devices generally enhances the cooling rate. However, it makes the system bulky. Therefore, a proper utilization of the surface area of the system is an important parameter to have an efficient heat dissipation system. It was always desirable to have a heat sink in the all devices that occupy minimum space with maximum effectiveness. The present work analyse conjugate heat transfer physics in a 3-D system of aluminium pin fins, with air as the working fluid. A finite volume solver, ANSYS Fluent has been used in simulating a staggered pin fin arrangement placed over a base plate. The solver is validated using the experimental data. The thermal analysis has been performed on fins with various cross sections. Consideration is given to fins having circular, hexagonal, pentagonal, triangular and drop-shaped cross sections with various inlet velocities.

Brugerbedømmelser af Experimental and Computational Heat Transfer Analysis of Heat Sink



Find lignende bøger
Bogen Experimental and Computational Heat Transfer Analysis of Heat Sink findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.