Udvidet returret til d. 31. januar 2025

Heights of Polynomials and Entropy in Algebraic Dynamics

Bag om Heights of Polynomials and Entropy in Algebraic Dynamics

Arithmetic geometry and algebraic dynamical systems are flourishing areas of mathematics. Both subjects have highly technical aspects, yet both of­ fer a rich supply of down-to-earth examples. Both have much to gain from each other in techniques and, more importantly, as a means for posing (and sometimes solving) outstanding problems. It is unlikely that new graduate students will have the time or the energy to master both. This book is in­ tended as a starting point for either topic, but is in content no more than an invitation. We hope to show that a rich common vein of ideas permeates both areas, and hope that further exploration of this commonality will result. Central to both topics is a notion of complexity. In arithmetic geome­ try 'height' measures arithmetical complexity of points on varieties, while in dynamical systems 'entropy' measures the orbit complexity of maps. The con­ nections between these two notions in explicit examples lie at the heart of the book. The fundamental objects which appear in both settings are polynomi­ als, so we are concerned principally with heights of polynomials. By working with polynomials rather than algebraic numbers we avoid local heights and p-adic valuations.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781849968546
  • Indbinding:
  • Paperback
  • Sideantal:
  • 228
  • Udgivet:
  • 19. oktober 2010
  • Størrelse:
  • 210x13x279 mm.
  • Vægt:
  • 567 g.
  • BLACK NOVEMBER
Leveringstid: 8-11 hverdage
Forventet levering: 6. december 2024

Beskrivelse af Heights of Polynomials and Entropy in Algebraic Dynamics

Arithmetic geometry and algebraic dynamical systems are flourishing areas of mathematics. Both subjects have highly technical aspects, yet both of­ fer a rich supply of down-to-earth examples. Both have much to gain from each other in techniques and, more importantly, as a means for posing (and sometimes solving) outstanding problems. It is unlikely that new graduate students will have the time or the energy to master both. This book is in­ tended as a starting point for either topic, but is in content no more than an invitation. We hope to show that a rich common vein of ideas permeates both areas, and hope that further exploration of this commonality will result. Central to both topics is a notion of complexity. In arithmetic geome­ try 'height' measures arithmetical complexity of points on varieties, while in dynamical systems 'entropy' measures the orbit complexity of maps. The con­ nections between these two notions in explicit examples lie at the heart of the book. The fundamental objects which appear in both settings are polynomi­ als, so we are concerned principally with heights of polynomials. By working with polynomials rather than algebraic numbers we avoid local heights and p-adic valuations.

Brugerbedømmelser af Heights of Polynomials and Entropy in Algebraic Dynamics



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.