Udvidet returret til d. 31. januar 2025
Bag om Jordan Canonical Form

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. In this book we develop JCF and show how to apply it to solving systems of differential equations. We first develop JCF, including the concepts involved in it?eigenvalues, eigenvectors, and chains of generalized eigenvectors. We begin with the diagonalizable case and then proceed to the general case, but we do not present a complete proof. Indeed, our interest here is not in JCF per se, but in one of its important applications. We devote the bulk of our attention in this book to showing how to apply JCF to solve systems of constant-coefficient first order differential equations, where it is a very effective tool. We cover all situations?homogeneous and inhomogeneous systems; real and complex eigenvalues. We also treat the closely related topic of the matrix exponential. Our discussion is mostly confined to the 2-by-2 and 3-by-3 cases, and we present a wealth of examples that illustrate allthe possibilities in these cases (and of course, exercises for the reader). Table of Contents: Jordan Canonical Form / Solving Systems of Linear Differential Equations / Background Results: Bases, Coordinates, and Matrices / Properties of the Complex Exponential

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783031012679
  • Indbinding:
  • Paperback
  • Sideantal:
  • 96
  • Udgivet:
  • 28. august 2008
  • Størrelse:
  • 191x6x235 mm.
  • Vægt:
  • 197 g.
  • BLACK NOVEMBER
  På lager
Leveringstid: 2-15 hverdage
Forventet levering: 10. december 2024

Beskrivelse af Jordan Canonical Form

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. In this book we develop JCF and show how to apply it to solving systems of differential equations. We first develop JCF, including the concepts involved in it?eigenvalues, eigenvectors, and chains of generalized eigenvectors. We begin with the diagonalizable case and then proceed to the general case, but we do not present a complete proof. Indeed, our interest here is not in JCF per se, but in one of its important applications. We devote the bulk of our attention in this book to showing how to apply JCF to solve systems of constant-coefficient first order differential equations, where it is a very effective tool. We cover all situations?homogeneous and inhomogeneous systems; real and complex eigenvalues. We also treat the closely related topic of the matrix exponential. Our discussion is mostly confined to the 2-by-2 and 3-by-3 cases, and we present a wealth of examples that illustrate allthe possibilities in these cases (and of course, exercises for the reader). Table of Contents: Jordan Canonical Form / Solving Systems of Linear Differential Equations / Background Results: Bases, Coordinates, and Matrices / Properties of the Complex Exponential

Brugerbedømmelser af Jordan Canonical Form



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.