Udvidet returret til d. 31. januar 2025

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials

Bag om Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials offers coverage of electronic structure, magnetic properties and their spin injection, and the transport properties of DLC, graphene, graphene oxide, carbon nanotubes, fullerenes, and their different composite materials. This book is a valuable resource for those doing research or working with carbon and carbon-related nanostructured materials for electronic and magnetic devices. Carbon-based nanomaterials are promising for spintronic applications because their weak spin-orbit (SO) coupling and hyperfine interaction in carbon atoms entail exceptionally long spin diffusion lengths (~100?m) in carbon nanotubes and graphene. The exceptional electronic and transport features of carbon nanomaterials could be exploited to build multifunctional spintronic devices. However, a large spin diffusion length comes at the price of small SO coupling, which limits the possibility of manipulating electrons via an external applied field. Assesses the relative utility of a variety of carbon-based nanomaterials for spintronics applicationsAnalyzes the specific properties that make carbon and carbon nanostructured materials optimal for spintronics and magnetic applicationsDiscusses the major challenges to using carbon nanostructured materials as magnetic agents on a mass scale

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9780128176801
  • Indbinding:
  • Paperback
  • Sideantal:
  • 240
  • Udgivet:
  • 31. januar 2020
  • Størrelse:
  • 235x191x14 mm.
  • Vægt:
  • 510 g.
  • BLACK NOVEMBER
  Gratis fragt
Leveringstid: 8-11 hverdage
Forventet levering: 6. december 2024

Beskrivelse af Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials offers coverage of electronic structure, magnetic properties and their spin injection, and the transport properties of DLC, graphene, graphene oxide, carbon nanotubes, fullerenes, and their different composite materials. This book is a valuable resource for those doing research or working with carbon and carbon-related nanostructured materials for electronic and magnetic devices.
Carbon-based nanomaterials are promising for spintronic applications because their weak spin-orbit (SO) coupling and hyperfine interaction in carbon atoms entail exceptionally long spin diffusion lengths (~100?m) in carbon nanotubes and graphene. The exceptional electronic and transport features of carbon nanomaterials could be exploited to build multifunctional spintronic devices. However, a large spin diffusion length comes at the price of small SO coupling, which limits the possibility of manipulating electrons via an external applied field.

Assesses the relative utility of a variety of carbon-based nanomaterials for spintronics applicationsAnalyzes the specific properties that make carbon and carbon nanostructured materials optimal for spintronics and magnetic applicationsDiscusses the major challenges to using carbon nanostructured materials as magnetic agents on a mass scale

Brugerbedømmelser af Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials



Find lignende bøger
Bogen Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.