Bag om Partial Covers, Reducts and Decision Rules in Rough Sets
PartialCovers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1. 1. 1 MainNotions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1. 1. 2 Known Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1. 1. 3 PolynomialApproximateAlgorithms. . . . . . . . . . . . . . . . . . 10 1. 1. 4 Bounds on C (?)Based on Information about min GreedyAlgorithm Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1. 1. 5 UpperBoundon C (?). . . . . . . . . . . . . . . . . . . . . . . . . . 17 greedy 1. 1. 6 Covers fortheMostPartofSetCoverProblems. . . . . . . . 18 1. 2 PartialTests and Reducts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1. 2. 1 MainNotions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1. 2. 2Relationships betweenPartialCovers and Partial Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1. 2. 3 PrecisionofGreedyAlgorithm. . . . . . . . . . . . . . . . . . . . . . . 24 1. 2. 4 PolynomialApproximateAlgorithms. . . . . . . . . . . . . . . . . . 25 1. 2. 5 Bounds on R (?)Based on Information about min GreedyAlgorithm Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1. 2. 6 UpperBoundon R (?). . . . . . . . . . . . . . . . . . . . . . . . . . 28 greedy 1. 2. 7 Tests fortheMostPartofBinaryDecisionTables. . . . . . 29 1. 3 PartialDecision Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vis mere