Udvidet returret til d. 31. januar 2025

Pseudocapacitive Storage in Advanced Nanostructured Materials towards Flexible Supercapacitor Device

- Molybdenum Nitride and Oxynitrides

Bag om Pseudocapacitive Storage in Advanced Nanostructured Materials towards Flexible Supercapacitor Device

Flexible Supercapacitors (FSCs) possessing higher power output, greater energy density, extended cycle life, superior rate performance, and eco-friendly attributes can satisfy the future energy storage and delivery requirements in upcoming flexible electronics. However, the current supercapacitors (SCs) technology based on carbonaceous or conducting polymers is constrained primarily by their low energy density, restraining their large-scale implementation. In this context, Pseudocapacitive materials such as Transition metal nitrides (TMNs) and transition metal oxides (TMOs) that undergo rapid and highly reversible redox and intercalation kinetics at or near the electrode surface, coupled with electric double-layer capacitive (EDLC) kinetics, can assist FSCs in achieving higher energy and power densities simultaneously.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9789999316354
  • Indbinding:
  • Paperback
  • Udgivet:
  • 18. marts 2024
  • Størrelse:
  • 152x229x4 mm.
  • Vægt:
  • 118 g.
  • BLACK WEEK
Leveringstid: 2-3 uger
Forventet levering: 13. december 2024

Beskrivelse af Pseudocapacitive Storage in Advanced Nanostructured Materials towards Flexible Supercapacitor Device

Flexible Supercapacitors (FSCs) possessing higher power output, greater energy density, extended cycle life, superior rate performance, and eco-friendly attributes can satisfy the future energy storage and delivery requirements in upcoming flexible electronics. However, the current supercapacitors (SCs) technology based on carbonaceous or conducting polymers is constrained primarily by their low energy density, restraining their large-scale implementation. In this context, Pseudocapacitive materials such as Transition metal nitrides (TMNs) and transition metal oxides (TMOs) that undergo rapid and highly reversible redox and intercalation kinetics at or near the electrode surface, coupled with electric double-layer capacitive (EDLC) kinetics, can assist FSCs in achieving higher energy and power densities simultaneously.

Brugerbedømmelser af Pseudocapacitive Storage in Advanced Nanostructured Materials towards Flexible Supercapacitor Device



Find lignende bøger
Bogen Pseudocapacitive Storage in Advanced Nanostructured Materials towards Flexible Supercapacitor Device findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.