Udvidet returret til d. 31. januar 2025

Similarity Joins in Relational Database Systems

Bag om Similarity Joins in Relational Database Systems

State-of-the-art database systems manage and process a variety of complex objects, including strings and trees. For such objects equality comparisons are often not meaningful and must be replaced by similarity comparisons. This book describes the concepts and techniques to incorporate similarity into database systems. We start out by discussing the properties of strings and trees, and identify the edit distance as the de facto standard for comparing complex objects. Since the edit distance is computationally expensive, token-based distances have been introduced to speed up edit distance computations. The basic idea is to decompose complex objects into sets of tokens that can be compared efficiently. Token-based distances are used to compute an approximation of the edit distance and prune expensive edit distance calculations. A key observation when computing similarity joins is that many of the object pairs, for which the similarity is computed, are very different from each other. Filters exploit this property to improve the performance of similarity joins. A filter preprocesses the input data sets and produces a set of candidate pairs. The distance function is evaluated on the candidate pairs only. We describe the essential query processing techniques for filters based on lower and upper bounds. For token equality joins we describe prefix, size, positional and partitioning filters, which can be used to avoid the computation of small intersections that are not needed since the similarity would be too low.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783031007231
  • Indbinding:
  • Paperback
  • Sideantal:
  • 128
  • Udgivet:
  • 19. november 2013
  • Størrelse:
  • 191x8x235 mm.
  • Vægt:
  • 255 g.
  • BLACK WEEK
Leveringstid: 8-11 hverdage
Forventet levering: 9. december 2024

Beskrivelse af Similarity Joins in Relational Database Systems

State-of-the-art database systems manage and process a variety of complex objects, including strings and trees. For such objects equality comparisons are often not meaningful and must be replaced by similarity comparisons. This book describes the concepts and techniques to incorporate similarity into database systems. We start out by discussing the properties of strings and trees, and identify the edit distance as the de facto standard for comparing complex objects. Since the edit distance is computationally expensive, token-based distances have been introduced to speed up edit distance computations. The basic idea is to decompose complex objects into sets of tokens that can be compared efficiently. Token-based distances are used to compute an approximation of the edit distance and prune expensive edit distance calculations. A key observation when computing similarity joins is that many of the object pairs, for which the similarity is computed, are very different from each other. Filters exploit this property to improve the performance of similarity joins. A filter preprocesses the input data sets and produces a set of candidate pairs. The distance function is evaluated on the candidate pairs only. We describe the essential query processing techniques for filters based on lower and upper bounds. For token equality joins we describe prefix, size, positional and partitioning filters, which can be used to avoid the computation of small intersections that are not needed since the similarity would be too low.

Brugerbedømmelser af Similarity Joins in Relational Database Systems



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.