Udvidet returret til d. 31. januar 2025

Sphere Packings, Lattices and Groups

Bag om Sphere Packings, Lattices and Groups

We now apply the algorithm above to find the 121 orbits of norm -2 vectors from the (known) nann 0 vectors, and then apply it again to find the 665 orbits of nann -4 vectors from the vectors of nann 0 and -2. The neighbors of a strictly 24 dimensional odd unimodular lattice can be found as follows. If a norm -4 vector v E II . corresponds to the sum 25 1 of a strictly 24 dimensional odd unimodular lattice A and a !-dimensional lattice, then there are exactly two nonn-0 vectors of ll25,1 having inner product -2 with v, and these nann 0 vectors correspond to the two even neighbors of A. The enumeration of the odd 24-dimensional lattices. Figure 17.1 shows the neighborhood graph for the Niemeier lattices, which has a node for each Niemeier lattice. If A and B are neighboring Niemeier lattices, there are three integral lattices containing A n B, namely A, B, and an odd unimodular lattice C (cf. [Kne4]). An edge is drawn between nodes A and B in Fig. 17.1 for each strictly 24-dimensional unimodular lattice arising in this way. Thus there is a one-to-one correspondence between the strictly 24-dimensional odd unimodular lattices and the edges of our neighborhood graph. The 156 lattices are shown in Table 17 .I. Figure I 7. I also shows the corresponding graphs for dimensions 8 and 16.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781441931344
  • Indbinding:
  • Paperback
  • Sideantal:
  • 784
  • Udgivet:
  • 1. december 2010
  • Udgave:
  • 10003
  • Størrelse:
  • 155x42x235 mm.
  • Vægt:
  • 1165 g.
  • BLACK WEEK
  Gratis fragt
Leveringstid: 8-11 hverdage
Forventet levering: 10. december 2024
Forlænget returret til d. 31. januar 2025

Beskrivelse af Sphere Packings, Lattices and Groups

We now apply the algorithm above to find the 121 orbits of norm -2 vectors from the (known) nann 0 vectors, and then apply it again to find the 665 orbits of nann -4 vectors from the vectors of nann 0 and -2. The neighbors of a strictly 24 dimensional odd unimodular lattice can be found as follows. If a norm -4 vector v E II . corresponds to the sum 25 1 of a strictly 24 dimensional odd unimodular lattice A and a !-dimensional lattice, then there are exactly two nonn-0 vectors of ll25,1 having inner product -2 with v, and these nann 0 vectors correspond to the two even neighbors of A. The enumeration of the odd 24-dimensional lattices. Figure 17.1 shows the neighborhood graph for the Niemeier lattices, which has a node for each Niemeier lattice. If A and B are neighboring Niemeier lattices, there are three integral lattices containing A n B, namely A, B, and an odd unimodular lattice C (cf. [Kne4]). An edge is drawn between nodes A and B in Fig. 17.1 for each strictly 24-dimensional unimodular lattice arising in this way. Thus there is a one-to-one correspondence between the strictly 24-dimensional odd unimodular lattices and the edges of our neighborhood graph. The 156 lattices are shown in Table 17 .I. Figure I 7. I also shows the corresponding graphs for dimensions 8 and 16.

Brugerbedømmelser af Sphere Packings, Lattices and Groups



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.